

ATC 17CS54/18CS54

Dept of CSE,SJBIT Page 1

Automata Theory and computability

Subject Code: 17CS54/18CS54 I.A. Marks : 40

Hours/Week : 04 Exam Hours: 03

Total Hours : 40 Exam Marks: 60

PART – A

Module – 1 8 Hours

Introduction to Finite Automata: Introduction to Finite Automata; The central concepts of

Automata theory; Deterministic finite automata; finite automata

Finite Automata, Regular Expressions: An application of finite automata; Finite automata

with Epsilon-transitions; Regular expressions; Finite Automata and Regular Expressions;

Applications of Regular Expressions

 Module – 2 8 Hours

Regular Languages, Properties of Regular Languages: Regular languages; Proving

languages not to be regular languages; Closure properties of regular languages; Decision

properties of regular languages; Equivalence and minimization of automata

Context-Free Grammars And Languages : Context –free grammars; Parse trees;

Applications; Ambiguity in grammars and Languages .

 8 Hours

 Module – 3

Pushdown Automata: Definition of the Pushdown automata; the languages of a PDA;

Equivalence of PDA‟s and CFG‟s; Deterministic Pushdown

Properties of Context-Free Languages: Normal forms for CFGs; The pumping lemma for

CFGs; Closure properties of CFLs

Module – 4 8 Hours

Introduction To Turing Machine: Problems that Computers cannot solve;The turning

machine; Programming techniques for Turning Machines;Extensions to the basic Turning

Machines; Turing Machine and Computers.

Module – 5 8 Hours

Undecidability: A Language that is not recursively enumerable; An Undecidable problem

that is RE; Post‟s Correspondence problem; Other undecidable problems.

ATC 17CS54

Dept of CSE,SJBIT Page 2

Text Books:

1. John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman: Introductionto Automata Theory,

Languages and Computation, 3rd Edition, Pearson Education, 2007.

(Chapters: 1.1, 1.5, 2.2 to 2.5, 3.1 to 3.3, 4, 5, 6, 7, 8.1 to8.4, 8.6, 9.1, 9.2, 9.4.1, 9.5)

Reference Books:

1. K.L.P. Mishra: Theory of Computer Science, Automata, Languages, and Computation, 3rd

Edition, PHI, 2007.

2. Raymond Greenlaw, H.James Hoover: Fundamentals of the Theory of Computation,

Principles and Practice, Morgan Kaufmann, 1998. 44

3. John C Martin: Introduction to Languages and Automata Theory, 3rd Edition, Tata

McGraw-Hill, 2007.

4. Thomas A. Sudkamp: An Introduction to the Theory of Computer Science, Languages and

Machines, 3rd Edition, Pearson Education, 2006.

ATC 17CS54

Dept of CSE,SJBIT Page 3

Table Of Contents Page no

UNIT-1:INTRODUCTION TO FINITE AUTOMATA: 5

1.1 : Introduction to finite Automata

1.2 : Central concepts of automata theory

1.3: Deterministic finite automata

1.4:Non deterministic finite automata

UNIT-2:FINITE AUTOMATA, REGULAR EXPRESSIONS 22

2.1 An application of finite automata

2.2 Finite automata with Epsilon transitions

2.3 Regular expressions

2.4 Finite automata and regular expressions

2.5Applications of Regular expressions

UNIT- 3: PROPERTIES OF REGULAR LANGUAGES 38

3.1 Regular languages

3.2 proving languages not to be regular languages

3.3 closure properties of regular languages

3.4 decision properties of regular languages

3.5 equivalence and minimization of automata

UNIT-4:Context Free Grammar and languages 57

4.1 Context free grammars

4.2 parse trees

4.3 Applications

4.4 ambiguities in grammars and languages

ATC 17CS54

Dept of CSE,SJBIT Page 4

UNIT-5: PUSH DOWN AUTOMATA 68

5.1: Definition of the pushdown automata

5.2: The languages of a PDA

5.3: Equivalence of PDA and CFG

5.4: Deterministic pushdown automata

Unit-6: PROPERTIES OF CONTEXT FREE LANGUAGES 78

6.1 Normal forms for CFGS

6.2The pumping lemma for CFGS

6.3closure properties of CFLS

UNIT -7: INTRODUCTION TO TURING MACHINES 98

7.1 problems that computers cannot solve

7.2 The Turing machine

7.3 Programming techniques for turing machines

7.4 Extensions to the basic turing machines

7.5 Turing machines and computers

Unit-8: Undesirability 109

8.1: A language that is not recursively enumerable

8.2: a un-decidable problem that is RE

8.3: Posts correspondence problem

8.4: Other undecidable problem

ATC 17CS54

Dept of CSE,SJBIT Page 5

FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT-1:INTRODUCTION TO FINITE AUTOMATA:

1.1 : Introduction to finite Automata

1.2 : Central concepts of automata theory

1.3: Deterministic finite automata

1.4:Non deterministic finite automata

ATC 17CS54

Dept of CSE,SJBIT Page 6

1.1 :Introduction to finite automata

In this chapter we are going to study a class of machines called finite automata. Finite

automata are computing devices that accept/recognize regular languages and are used to

model operations of many systems we find in practice. Their operations can be simulated

by a very simple computer program. A kind of systems finite automnata can model and a

computer program to simulate their operations are discussed.

Formal definition

Automaton

An automaton is represented formally by a 5-tuple (Q,Σ,δ,q0,F), where:

• Q is a finite set of states.

• Σ is a finite set of symbols, called the alphabet of the automaton.

• δ is the transition function, that is, δ: Q × Σ → Q.

• q0 is the start state, that is, the state of the automaton before any input has

been processed, where q0 Q.

• F is a set of states of Q (i.e. F Q) called accept states.

Input word

An automaton reads a finite string of symbols a1,a2,...., an , where ai Σ, which is

called an input word. The set of all words is denoted by Σ*.

Run
A run of the automaton on an input word w = a1,a2,...., an Σ*, is a sequence of

states q0,q1,q2,...., qn, where qi Q such that q0 is the start state and qi = δ(qi-1,ai)

for 0 < i ≤ n. In words, at first the automaton is at the start state q0, and then the

automaton reads symbols of the input word in sequence. When the automaton

reads symbol ai it jumps to state qi = δ(qi-1,ai). qn is said to be the final state of the

run.

Accepting word

A word w Σ* is accepted by the automaton if qn F.

Recognized language

An automaton can recognize a formal language. The language L Σ* recognized

by an automaton is the set of all the words that are accepted by the automaton.

Recognizable languages

The recognizable languages are the set of languages that are recognized by some

automaton. For the above definition of automata the recognizable languages are

regular languages. For different definitions of automata, the recognizable

languages are different.

1.2 :concepts of automata theory

Automata theory is a subject matter that studies properties of various types of automata.

For example, the following questions are studied about a given type of automata.

• Which class of formal languages is recognizable by some type of automata?

(Recognizable languages)

ATC 17CS54

Dept of CSE,SJBIT Page 7

• Are certain automata closed under union, intersection, or complementation of

formal languages? (Closure properties)

• How much is a type of automata expressive in terms of recognizing class of

formal languages? And, their relative expressive power? (Language Hierarchy)

Automata theory also studies if there exist any effective algorithm or not to solve

problems similar to the following list.

• Does an automaton accept any input word? (emptiness checking)

• Is it possible to transform a given non-deterministic automaton into deterministic

automaton without changing the recognizable language? (Determinization)

• For a given formal language, what is the smallest automaton that recognizes it?

(Minimization).

Classes of automata

The following is an incomplete list of types of automata.

Automata

Deterministic finite automata(DFA)

Nondeterministic finite automata(NFA)

Nondeterministic finite automata with ε-transitions (FND-ε

or ε-NFA)

Pushdown automata (PDA)

Linear bounded automata (LBA)

Turing machines

Timed automata

Deterministic Büchi automata

Nondeterministic Büchi automata

Nondeterministic/Deterministic Rabin automata

Nondeterministic/Deterministic Streett automata

Nondeterministic/Deterministic parity automata

Nondeterministic/Deterministic Muller automata

Recognizable language

regular languages

regular languages

regular languages

context-free languages

context-sensitive language

recursively enumerable

languages

ω-limit languages

ω-regular languages

ω-regular languages

ω-regular languages

ω-regular languages

ω-regular languages

1.3 :Deterministic finite automata

. Definition: A DFA is 5-tuple or quintuple M = (Q, ∑, Δ, q0, A) where

Q is non-empty, finite set of states.

∑ is non-empty, finite set of input alphabets.

Δ is transition function, which is a mapping from Q x ∑ to Q.

ATC 17CS54

Dept of CSE,SJBIT Page 8

a,b

q a q b q

b
a

q

a,b

q0 ∈ Q is the start state.

A ⊆ Q is set of accepting or final states.

Note: For each input symbol a, from a given state there is exactly one transition (there

can be no transitions from a state also) and we are sure (or can determine) to which state

the machine enters. So, the machine is called Deterministic machine. Since it has finite

number of states the machine is called Deterministic finite machine or Deterministic

Finite Automaton or Finite State Machine (FSM).

The language accepted by DFA is

L(M) = { w | w ∈ ∑* and Δ*(q0, w) ∈ A }

The non-acceptance of the string w by an FA or DFA can be defined in formal notation

as:

L(M) = { w | w ∈ ∑* and Δ*(q0, w) ∉ A }

Obtain a DFA to accept strings of a’s and b’s starting with the string ab

Fig.1.1 Transition diagram to accept string ab(a+b)*

So, the DFA which accepts strings of a‟s and b‟s starting with the string ab is given by

M = (Q, ∑ , Δ, q0, A) where

Q = {q0, q1, q2, q3}

∑ = {a, b}

q0 is the start state

A = {q2}.

Δ is shown the transition table 2.4.

Δ

←Σ→

a b

→q0 q1 q3

q1 q3 q2

q2 q2 q2

q3 q3 q3

ATC 17CS54

Dept of CSE,SJBIT Page 9

1

q0
0

0

q1
1

0
q2

0

1
q3

b a,b

q0
a

q1
a

q2

b b a,b

q0
a q1

a q2

b a, b

q0
a q1

Draw a DFA to accept string of 0’s and 1’s ending with the string 011.

1

Obtain a DFA to accept strings of a’s and b’s having a sub string aa

b

Obtain a DFA to accept strings of a’s and b’s except those containing the substring aab.

a,b

b

Obtain DFAs to accept strings of a’s and b’s having exactly one a,

a, b

b a

q0
a

q1
a

q2
b

q3

b b b b

q0
a q1

a q2
a q3

a q4

ATC 17CS54

Dept of CSE,SJBIT page 10

q q
a

b b b
a

q q

q0 q1

a

b b b

a

q2 q3

q0 q1

a

b b b

a

q2 q3

Obtain a DFA to accept strings of a’s and b’s having even number of a’s and b’s

The machine to accept even number of a‟s and b‟s is shown in fig.2.22.

a

b

a

Fig.2.22 DFA to accept even no. of a’s and b’s

a

b

a a

b

a

a

b

a
Regular language

Definition: Let M = (Q, ∑, Δ, q0, A) be a DFA. The language L is regular if there exists a

machine M such that L = L(M).

q0 q1

a

b b b

a

q2 q3

ATC 17CS54

Dept of CSE,SJBIT Page 11

* Applications of Finite Automata *

String matching/processing

Compiler Construction

The various compilers such as C/C++, Pascal, Fortran or any other compiler is designed

using the finite automata. The DFAs are extensively used in the building the various

phases of compiler such as

• Lexical analysis (To identify the tokens, identifiers, to strip of the comments etc.)

• Syntax analysis (To check the syntax of each statement or control statement used

in the program)

• Code optimization (To remove the un wanted code)

• Code generation (To generate the machine code)

Other applications- The concept of finite automata is used in wide applications. It is not

possible to list all the applications as there are infinite number of applications. This

section lists some applications:

1. Large natural vocabularies can be described using finite automaton which

includes the applications such as spelling checkers and advCSErs, multi-
language

dictionaries, to indent the documents, in calculators to evaluate complex

expressions based on the priority of an operator etc. to name a few. Any editor

that we use uses finite automaton for implementation.

2. Finite automaton is very useful in recognizing difficult problems i.e., sometimes it

is very essential to solve an un-decidable problem. Even though there is no

general solution exists for the specified problem, using theory of computation, we

can find the approximate solutions.

3. Finite automaton is very useful in hardware design such as circuit verification, in

design of the hardware board (mother board or any other hardware unit),

automatic traffic signals, radio controlled toys, elevators, automatic sensors,

remote sensing or controller etc.

In game theory and games wherein we use some control characters to fight against a

monster, economics, computer graphics, linguistics etc., finite automaton plays a very

important role

ATC 17CS54

Dept of CSE,SJBIT Page 12

b

q1
a q2

b q3
a q4

Ε

q0

Ε
a

q5
a q6

b q7

1.4 : Non deterministic finite automata(NFA)

Definition: An NFA is a 5-tuple or quintuple M = (Q, ∑, Δ, q0, A) where

Q is non empty, finite set of states.

∑ is non empty, finite set of input alphabets.

Δ is transition function which is a mapping from

Q x {∑ U Ε} to subsets of 2Q. This function shows

the change of state from one state to a set of states

based on the input symbol.

q0 ∈ Q is the start state.

A ⊆ Q is set of final states.

Acceptance of language

Definition: Let M = (Q, ∑, Δ, q0, A) be a DFA where Q is set of finite states, ∑ is set of

input alphabets (from which a string can be formed), Δ is transition function from Q x

{∑UΕ} to 2Q, q0 is the start state and A is the final or accepting state. The string (also

called language) w accepted by an NFA can be defined in formal notation as:

L(M) = { w | w ∈ ∑*and Δ*(q0, w) = Q with atleast one

Component of Q in A}

Obtain an NFA to accept the following language L = {w | w ∈ abab

n
 or aba

n
 where n ≥ 0}

The machine to accept either abab
n
 or aba

n
 where n ≥ 0 is shown below:

Conversion from NFA to DFA

Let MN = (QN, ∑N, ΔN, q0, AN) be an NFA and accepts the language L(MN). There should

be an equivalent DFA MD = (QD, ∑D, ΔD, q0, AD) such that L(MD) = L(MN). The

procedure to convert an NFA to its equivalent DFA is shown below:

ATC 17CS54

Dept of CSE,SJBIT Page 13

0 1

q0
0,1

q1
0, 1

q2

Step1:

Step2:

Step3:

Step4:

The start state of NFA MN is the start state of DFA MD. So, add q0(which is the

start state of NFA) to QD and find the transitions from this state. The way to

obtain different transitions is shown in step2.

For each state [qi, qj,….qk] in QD, the transitions for each input symbol in ∑ can

be obtained as shown below:

1. ΔD([qi, qj,….qk], a) = ΔN(qi, a) U ΔN(qj, a) U ……ΔN(qk, a)

= [ql, qm,….qn] say.

2. Add the state [ql, qm,….qn] to QD, if it is not already in QD.

3. Add the transition from [qi, qj,….qk] to [ql, qm,….qn] on the input symbol a iff

the state [ql, qm,….qn] is added to QD in the previous step.

The state [qa, qb,….qc] ∈ QD is the final state, if at least one of the state in qa, qb,

….. qc ∈ AN i.e., at least one of the component in [qa, qb,….qc] should be the final

state of NFA.

If epsilon (∈) is accepted by NFA, then start state q0 of DFA is made the final

state.

Convert the following NFA into an equivalent DFA.

Step1: q0 is the start of DFA (see step1 in the conversion procedure).

So, QD = {[q0]} (2.7)

Step2: Find the new states from each state in QD and obtain the corresponding transitions.

Consider the state [q0]:

When a = 0

ΔD([q0], 0)

When a = 1

ΔD([q0], 1)

= ΔN([q0], 0)
= [q0, q1]

(2.8)

= ΔN([q0], 1)

ATC 17CS54

Dept of Page 14

= [q1]

(2.9)

Since the states obtained in (2.8) and (2.9) are not in QD(2.7), add these two states to QD

so that

QD = {[q0], [q0, q1], [q1] } (2.10)

The corresponding transitions on a = 0 and a = 1 are shown below.

∑

Q

Consider the state [q0, q1]:

When a = 0

ΔD([q0, q1], =

0) =
=

=

When a = 1

ΔN([q0, q1], 0)

ΔN(q0, 0) U ΔN(q1, 0)

{q0, q1} U {q2}

[q0, q1, q2]

(2.11)

ΔD([q0, q1], = ΔN([q0, q1], 1)

1) = ΔN(q0, 1) U ΔN(q1, 1)
 = {q1} U {q2}
 = [q1, q2]
 (2.12)

Since the states obtained in (2.11) and (2.12) are the not defined in QD(see 2.10), add

these two states to QD so that

QD = {[q0], [q0, q1], [q1], [q0, q1, q2], [q1, q2] } (2.13)

and add the transitions on a = 0 and a = 1 as shown below:

∑

Q

Δ 0 1

[q0] [q0, q1] [q1]

[q0, q1]

[q1]

Δ 0 1

[q0] [q0, q1] [q1]

[q0, q1] [q0, q1, q2] [q1, q2]

[q1]

[q0, q1,

q2]

[q1, q2]

ATC 17CS54

Dept of CSE,SJBIT Page 15

Consider the state [q1]:

When a = 0

ΔD([q1], 0)

When a = 1

ΔD([q1], 1)

= ΔN([q1], 0)

= [q2]

(2.14)

= ΔN([q1], 1)

= [q2]

(2.15)

Since the states obtained in (2.14) and (2.15) are same and the state q2 is not in QD(see

2.13), add the state q2 to QD so that

QD = {[q0], [q0, q1], [q1], [q0, q1, q2], [q1, q2], [q2]} (2.16)

and add the transitions on a = 0 and a = 1 as shown below:

∑

Q

Consider the state [q0,q1,q2]:

When a = 0

ΔD([q0,q1,q2],

0)

When a = 1

= ΔN([q0,q1,q2], 0)
= ΔN(q0, 0) U ΔN(q1, 0) U ΔN(q2, 0)
= {q0,q1} U {q2} U {Φ}
= [q0,q1,q2]

(2.17)

ΔD([q0,q1,q2],

1)

=

=
ΔN([q0,q1,q2], 1)

ΔN(q0, 1) U ΔN(q1, 1) U ΔN(q2, 1)
 = {q1} U {q2} U {q2}
 = [q1, q2]

Δ 0 1

[q0] [q0, q1] [q1]

[q0, q1] [q0, q1, q2] [q1, q2]

[q1] [q2] [q2]

[q0, q1,

q2]

[q1, q2]

[q2]

ATC 17CS54

Dept of CSE,SJBIT Page 16

(2.18)

Since the states obtained in (2.17) and (2.18) are not new states (are already in QD, see

2.16), do not add these two states to QD. But, the transitions on a = 0 and a = 1 should be

added to the transitional table as shown below:

∑

Q

Consider the state [q1,q2]:

When a = 0

ΔD([q1,q2], 0)

= ΔN([q1,q2], 0)
= ΔN(q1, 0) U ΔN(q2, 0)
= {q2} U {Φ}

When a = 1

ΔD([q1,q2], 1)

=

=

[q2]

(2.19)

ΔN([q1,q2], 1)

 =

=

=

ΔN(q1, 1) U ΔN(q2, 1)

{q2} U {q2}

[q2]
(2.20)

Since the states obtained in (2.19) and (2.20) are not new states (are already in QD see

2.16), do not add these two states to QD. But, the transitions on a = 0 and a = 1 should be

added to the transitional table as shown below:

∑

Q

Consider the state [q2]:

Δ 0 1

[q0] [q0, q1] [q1]

[q0, q1] [q0, q1, q2] [q1, q2]

[q1] [q2] [q2]

[q0, q1,

q2]

[q0,q1,q2] [q1, q2]

[q1, q2]

[q2]

Δ 0 1

[q0] [q0, q1] [q1]

[q0, q1] [q0, q1, q2] [q1, q2]

[q1] [q2] [q2]

[q0, q1,

q2]

[q0,q1,q2] [q1, q2]

[q1, q2] [q2] [q2]

[q2]

ATC 17CS54

Dept of CSE,SJBIT Page 17

[q 0]

0 1

[q 0 , q 1] [q 1]

0 1 0, 1

[q 0 , q 1 , q 2]
1

[q 1 , q 2]
0, 1

[q 2]

When a = 0

ΔD([q2], 0)

When a = 1

ΔD([q2], 1)

= ΔN([q2], 0)

= {Φ}

(2.21)

= ΔN([q2], 1)

= [q2]

(2.22)

Since the states obtained in (2.21) and (2.22) are not new states (are already in QD, see

2.16), do not add these two states to QD. But, the transitions on a = 0 and a = 1 should be

added to the transitional table. The final transitional table is shown in table 2.14. and final

DFA is shown in figure 2.35.

Δ 0 1

[q0] [q0, q1] [q1]

[q0,q1]
[q0, q1, q2] [q1, q2]

[q1]
[q2] [q2]

[q0,q1,q2]
[q0,q1,q2] [q1, q2]

[q1,q2] [q2] [q2]

[q2] Φ [q2]

0 1

Fig.2.35 The DFA

ATC 17CS54

Dept of CSE,SJBIT Page 18

Ε

Ε 4
a

5 ∈

0
a

1
b

2
Ε

3 8
∈

9

Ε 6
b

Ε

7 Ε

Convert the following NFA to its equivalent DFA.

Let QD = {0}

Consider the state [A]:

When input is a:

Δ(A, a)

When input is b:

Δ(A, b)

Consider the state [B]:

When input is a:

Δ(B, a)

= ΔN(0, a)

= {1}

(B)

= ΔN(0, b)
= {Φ}

= ΔN(1, a)
= {Φ}

(A)

When input is b:

Δ(B, b)

= ΔN(1, b)
= {2}
= {2,3,4,6,9} (C)

This is because, in state 2, due to Ε-transitions (or without giving any input)

there can be transition to states 3,4,6,9 also. So, all these states are reachable

from state 2. Therefore,

Δ(B, b) = {2,3,4,6,9} = C

Consider the state [C]:

When input is a:

Δ(C, a) = ΔN({2,3,4,6,9}, a)
= {5}
= {5, 8, 9, 3, 4, 6}

= {3, 4, 5, 6, 8, 9} (ascending

order) (D)

ATC 17CS54

Dept of CSE,SJBIT Page 19

This is because, in state 5 due to Ε-transitions, the states reachable are {8, 9, 3,

4, 6}. Therefore,

Δ(C, a) = {3, 4, 5, 6, 8, 9} = D

When input is b:

Δ(C, b) = ΔN({2, 3, 4, 6, 9}, b)
= {7}
= {7, 8, 9, 3, 4, 6}

= {3, 4, 6, 7, 8, 9}(ascending order)

(E)

This is because, from state 7 the states that are reachable without any input (i.e.,

Ε-transition) are {8, 9, 3, 4, 6}. Therefore,

Δ(C, b) = {3, 4, 6, 7, 8, 9} = E

Consider the state [D]:

When input is a:

Δ(D, a) = ΔN({3,4,5,6,8,9}, a)
= {5}
= {5, 8, 9, 3, 4, 6}

= {3, 4, 5, 6, 8, 9} (ascending

order) (D)

When input is b:

Δ(D, b)

Consider the state [E]:

When input is a:

Δ(E, a)

When input is b:

Δ(E, b)

= ΔN({3,4,5,6,8,9}, b)
= {7}
= {7, 8, 9, 3, 4, 6}

= {3, 4, 6, 7, 8, 9} (ascending

order) (E)

= ΔN({3,4,6,7,8,9}, a)
= {5}
= {5, 8, 9, 3, 4, 6}

= {3, 4, 5, 6, 8, 9}(ascending order)

(D)

= ΔN({3,4,6,7,8,9}, b)
= {7}
= {7, 8, 9, 3, 4, 6}

= {3, 4, 6, 7, 8, 9}(ascending order)

(E)

Since there are no new states, we can stop at this point and the transition table for the

DFA is shown in table 2.15.

ATC 17CS54

Dept of CSE,SJBIT Page 20

a

A
a

B
b

C

b

a

a
D

b
E

b

∑

Q

Table 2.15 Transitional table

The states C,D and E are final states, since 9 (final state of NFA) is present in C, D and E.

The final transition diagram of DFA is shown in figure 2.36

Fig. 2.36 The DFA

Δ a b

A B -

B - C

C D E

D D E

E D E

ATC 17CS54

Dept of CSE,SJBIT Page 21

Unit 1: Recommended questions

1. Obtain a DFA to accept strings of a‟s and b‟s starting with the string ab

2. Draw a DFA to accept string of 0‟s and 1‟s ending with the string 011.

3. Obtain a DFA to accept strings of a‟s and b‟s having a sub string aa

4. Obtain a DFA to accept strings of a‟s and b‟s except those containing the

substring aab.

5. Obtain DFAs to accept strings of a‟s and b‟s having exactly one a,

6. Obtain a DFA to accept strings of a‟s and b‟s having even number of a‟s and b‟s

7. Give Applications of Finite Automata *

8. Define DFA, ∈ NFA & Language?

9. (i) Write Regular expression for the following L = { an bm : m, n are even} L = { an, bm

: m>=2, n>=2}
(ii) Write DFA to accept strings of 0‟s, 1‟s & 2‟s beginning with a 0 followed by odd

number of 1‟s and ending with a 2.

10. Design a DFA to accept string of 0‟s & 1‟s when interpreted as binary numbers would be
multiple of 3.

11. Find ∈ closure of each state and give the set of all strings of length 3 or less accepted by

automaton.

δ ∈ a b

 p

q

*r

{r}

Φ

{p,q}

{q}

{p}

{r}

{p,r}

Φ

{p}

12. Convert above automaton to a DFA
13. Write a note on Application of automaton.

ATC 17CS54

Dept of CSE,SJBIT Page 22

UNIT-2:

FINITE AUTOMATA, REGULAR EXPRESSIONS

2.1 An application of finite automata

2.2 Finite automata with Epsilon transitions

2.3 Regular expressions

2.4 Finite automata and regular expressions

2.5 Applications of Regular expressions

ATC 17CS54

Dept of CSE,SJBIT Page 23

2.1 An application of finite automata

Applications of finite automata includes String matching algorithms, network

protocols and lexical analyzers

String Processing

Consider finding all occurrences of a short string (pattern string) within a

Long string (text string).This can be done by processing the text through

a DFA: the DFA for all strings that end with the pattern string. Each time the accept state

is reached, the current position in the text is output

Example: Finding 1001

To find all occurrences of pattern 1001, construct

the DFA for all strings ending in 1001.

Finite-State Machines

A finite-state machine is an FA together with

actions on the arcs.

A trivial example for a communication link:

ATC 17CS54

Dept of CSE,SJBIT Page 24

Example FSM: Bot Behavior

A bot is a computer-generated character in a video game.

State charts

State charts model tasks as a set of states and actions. They extend FA diagrams. Here is

a simplified state chart for a stopwatch

Lexical Analysis

In compiling a program, the first step is lexi-cal analysis. This isolates

keywords,identifiersetc., while eliminating irrelevant symbols.A token is a category, for

example “identifier”,“relation operator” or specific keyword.

For example,

token RE

keyword then then

variable name [a-zA-Z][a-zA-Z0-9]* where latter RE says it is any string of

alphanumeric

characters starting with a letter.

A lexical analyzer takes source code as a string,and outputs sequence of tokens.

For example,

for i = 1 to max do

x[i] = 0;

might have token sequence

for id = num to id do id [id] = num sep

As a token is identified, there may be an action.

For example, when a number is identified, itsvalue is calculated

2.2 Finite automata with Epsilon transitions

We can extend an NFA by introducing a "feature" that allows us to make a transition on

, the empty string. All the transition lets us do is spontaneously make a transition,

ATC 17CS54

Dept of CSE,SJBIT Page 25

without receiving an input symbol. This is another mechanism that allows our NFA to be
in multiple states at once. Whenever we take an edge, we must fork off a new "thread"
for the NFA starting in the destination state.

Just as nondeterminism made NFA's more convenient to represent some problems than

DFA's but were not more powerful, the same applies to ΕNFA's. While more

expressive, anything we can represent with an ΕNFA we can represent with a DFA that

has no Ε transitions.

Epsilon Closure

Epsilon Closure of a state is simply the set of all states we can reach by following the

transition function from the given state that are labeled . Generally speaking, a collection of

objects is closed under some operation if applying that operation to members of the

collection

returns an object still in the collection.

In the above example:

Ε∗ (q) = { q }

Ε∗ (r) = { r, s}

let us define the extended transition function for an ΕNFA. For a

regular, NFA we said for the induction step:

Let

Δ^(q,w) = {p1, p2, ... pk}

Δ(pi,a) = Sifor i=1,2,...k

Then ^(q, wa) = S1,S2... Sk

For an -NFA, we change for ^(q, wa):

Union[Δ∗ (Each state in S1, S2, ... Sk)]

This includes the original set S1,S2... Sk as well as any states we can reach via .

When coupled with the basis that ^(q,) = Δ∗ (q) lets us inductively define an

extended transition function for a ΕNFA.

Eliminating ΕTransitions

ΕTransitions are a convenience in some cases, but do not increase the power of the NFA.

To eliminate them we can convert a ΕNFA into an equivalent DFA, which is quite

similar to the steps we took for converting a normal NFA to a DFA, except we must now

follow all ΕTransitions and add those to our set of states.

1. Compute Ε∗ for the current state, resulting in a set of states S.

2. Δ(S,a) is computed for all a in ∑ by
a. Let S = {p1, p2, ... pk}

b. Compute I=1k (pi,a) and call this set {r1, r2, r3... rm}. This set is achieved by

following input a,

not by following any Ε transitions

c. Add the Ε transitions in by computing (S,a)= I=1 m Ε∗ (r1)

3. Make a state an accepting state if it includes any final states in the -NFA.

Note :The ε (epsilon) transition refers to a transition from one state to another

without the reading of an input

ATC 17CS54

Dept of CSE,SJBIT Page 26

symbol (ie without the tape containing the input string moving). Epsilon

transitions can be inserted between

any states. There is also a conversion algorithm from a

NFA with epsilon transitions to a NFA without

epsilon transitions.

Consider the NFA-epsilon move machine M = { Q, ∑,

Δ, q0, F}

Q = { q0, q1, q2 }

∑= { a, b, c } and Ε moves

q0 = q0

F = { q2 }

Note: add an arc from qz to qz labeled "c" to figure above.

The language accepted by the above NFA with epsilon moves is

the set of strings over {a,b,c} including the null string and

all strings with any number of a's followed by any number of b's

followed by any number of c's.

Now convert the NFA with epsilon moves to a NFA M = (Q', ∑, Δ', q0', F')

First determine the states of the new machine, Q' = the epsilon closure

of the states in the NFA with epsilon moves. There will be the same number

of states but the names can be constructed by writing the state name as

the set of states in the epsilon closure. The epsilon closure is the

initial state and all states that can be reached by one or more epsilon moves.

Thus q0 in the NFA-epsilon becomes {q0,q1,q2} because the machine can move

from q0 to q1 by an epsilon move, then check q1 and find that it can move

from q1 to q2 by an epsilon move.

q1 in the NFA-epsilon becomes {q1,q2} because the machine can move from

Δ a b C Ε

q0 {q0} Φ Φ {q1}

q1 Φ {q2} Φ {q2}

q2 Φ Φ {q2} Φ

ATC 17CS54

Dept of CSE,SJBIT Page 27

q1 to q2 by an epsilon move.

q2 in the NFA-epsilon becomes {q2} just to keep the notation the same. q2

can go nowhere except q2, that is what phi means, on an epsilon move.

We do not show the epsilon transition of a state to itself here, but,

beware, we will take into account the state to itself epsilon transition

when converting NFA's to regular expressions.

The initial state of our new machine is {q0,q1,q2} the epsilon closure of q0

The final state(s) of our new machine is the new state(s) that contain

a state symbol that was a final state in the original machine.

The new machine accepts the same language as the old machine, thus same sigma.

So far we have for out new NFA

Q' = { {q0,q1,q2}, {q1,q2}, {q2} } or renamed { qx, qy, qz }

∑= { a, b, c }

F' = { {q0,q1,q2}, {q1,q2}, {q2} } or renamed { qx, qy, qz }

q0 = {q0,q1,q2} or renamed qx

inputs

Δ′ a b c

qx or{q0,q1,q2}

qy or{q1,q2}

qz or{q2}

Now we fill in the transitions. Remember that a NFA has transition entries that are sets.

Further, the names in the transition entry sets must be only the state names from Q'.

Very carefully consider each old machine transitions in the first row.

You can ignore any Φ entries and ignore the Ε column.

In the old machine Δ(q0,a)=q0 thus in the new machine

Δ'({q0,q1,q2},a)={q0,q1,q2} this is just because the new machine

accepts the same language as the old machine and must at least have the

the same transitions for the new state names.

inputs

Δ′ a b c

qx or{q0,q1,q2} {qx} or{{q0,q1,q2}}

qy or{q1,q2}

qz or{q2}

No more entries go under input a in the first row because

old Δ(q1,a)=Φ, Δ(q2,a)=Φ

ATC 17CS54

Dept of Page 28

Now consider the input b in the first row, Δ(q0,b)=Φ, Δ(q1,b)={q2}

and Δ(q2,b)=Φ. The reason we considered q0, q1 and q2 in the old

machine was because out new state has symbols q0, q1 and q2 in the new

state name from the epsilon closure. Since q1 is in {q0,q1,q2} and

Δ(q1,b)=q1 then Δ'({q0,q1,q2},b)={q1,q2}. WHY {q1,q2} ?, because

{q1,q2} is the new machines name for the old machines name q1. Just

compare the zeroth column of Δ to Δ'. So we have

inputs

Δ′ a b c

qx or{q0,q1,q2} {qx} or{{q0,q1,q2}} {qy} or{{q1,q2}}

qy or{q1,q2}

qz or{q2}

Now, because our new qx state has a symbol q2 in its name and

Δ(q2,c)=q2 is in the old machine, the new name for the old q2,

which is qz or {q2} is put into the input c transition in row 1.

Inputs

Δ′ a b c

qx or{q0,q1,q2} {qx} or{{q0,q1,q2}} {qy} or{{q1,q2}} {qz} or{{q2}}

qy or{q1,q2}

qz or{q2}

Now, tediously, move on to row two,

You are considering all transitions in the old machine, delta,

for all old machine state symbols in the name of the new machines states.

Fine the old machine state that results from an input and translate

the old machine state to the corresponding new machine state name and

put the new machine state name in the set in delta'. Below are the

"long new state names" and the renamed state names in delta'.

Inputs

Δ′ a b c

qx or{q0,q1,q2} {qx} or{{q0,q1,q2}} {qy} or{{q1,q2}} {qz} or{{q2}}

qy or{q1,q2} Φ {qy} or{{q1,q2}} {qz} or{{q2}}

qz or{q2} Φ Φ {qz} or{{q2}}

inputs

\

\ Q′

/

/

Δ′ a b c

qx {qx} {qy} {qz}

qy Φ {qy} {qz}

qz Φ Φ {qz}

ATC 17CS54

Dept of CSE,SJBIT Page 29

The figure above labeled NFA shows this state transition table.

It seems rather trivial to add the column for epsilon transitions,

but we will make good use of this in converting regular expressions

to machines. regular-expression -> NFA-epsilon -> NFA -> DFA.

2.3 :Regular expression

Definition: A regular expression is recursively defined as follows.

1. Φ is a regular expression denoting an empty language.

2. Ε-(epsilon) is a regular expression indicates the language containing an empty

string.

3. a is a regular expression which indicates the language containing only {a}

4. If R is a regular expression denoting the language LR and S is a regular

expression denoting the language LS, then

a. R+S is a regular expression corresponding to the language LRULS.

b. R.S is a regular expression corresponding to the language LR.LS..

c. R* is a regular expression corresponding to the language LR
*.

5. The expressions obtained by applying any of the rules from 1-4 are regular

expressions.

The table 3.1 shows some examples of regular expressions and the language corresponding to

these regular expressions.

Regular

expressions

Meaning

(a+b)* Set of strings of a‟s and b‟s of any length

including the NULL string.

(a+b)*abb Set of strings of a‟s and b‟s ending with the

string abb

ab(a+b)* Set of strings of a‟s and b‟s starting with the

string ab.

(a+b)*aa(a+b)

*
Set of strings of a‟s and b‟s having a sub string

aa.

a*b*c* Set of string consisting of any number of

a‟s(may be empty string also) followed by any

number of b‟s(may include empty string)

followed by any number of c‟s(may include

empty string).

a+b+c+
Set of string consisting of at least one „a‟

followed by string consisting of at least one „b‟

ATC 17CS54

Dept of CSE,SJBIT Page 30

 followed by string consisting of at least one „c‟.

aa*bb*cc* Set of string consisting of at least one „a‟

followed by string consisting of at least one „b‟

followed by string consisting of at least one „c‟.

(a+b)* (a +

bb)

Set of strings of a‟s and b‟s ending with either a

or bb

(aa)*(bb)*b Set of strings consisting of even number of a‟s

followed by odd number of b‟s

(0+1)*000 Set of strings of 0‟s and 1‟s ending with three

consecutive zeros(or ending with 000)

(11)* Set consisting of even number of 1‟s

Table 3.1 Meaning of regular expressions

Obtain a regular expression to accept a language consisting of strings of a‟s and b‟s of even

length.

String of a‟s and b‟s of even length can be obtained by the combination of the strings aa,

ab, ba and bb. The language may even consist of an empty string denoted by Ε. So, the

regular expression can be of the form

(aa + ab + ba + bb)*

The * closure includes the empty string.

Note: This regular expression can also be represented using set notation as

L(R) = {(aa + ab + ba + bb)n | n ≥ 0}

Obtain a regular expression to accept a language consisting of strings of a‟s and b‟s of odd

length.

String of a‟s and b‟s of odd length can be obtained by the combination of the strings aa,

ab, ba and bb followed by either a or b. So, the regular expression can be of the form

(aa + ab + ba + bb)* (a+b)

String of a‟s and b‟s of odd length can also be obtained by the combination of the strings

aa, ab, ba and bb preceded by either a or b. So, the regular expression can also be

represented as

(a+b) (aa + ab + ba + bb)*

Note: Even though these two expression are seems to be different, the language

corresponding to those two expression is same. So, a variety of regular expressions can

be obtained for a language and all are equivalent.

ATC 17CS54

Dept of CSE,SJBIT Page 31

q M f

Ε q1 M1 Ε

q0 qf

Ε q2 M2 Ε

2.4 :finite automata and regular expressions

Obtain NFA from the regular expression

Theorem: Let R be a regular expression. Then there exists a finite automaton M = (Q, ∑,

Δ, q0, A) which accepts L(R).

Proof: By definition, Φ, Ε and a are regular expressions. So, the corresponding machines

to recognize these expressions are shown in figure 3.1.a, 3.1.b and 3.1.c respectively.

Φ

(a) (b) (c)

Fig 3.1 NFAs to accept Φ, Ε and a

The schematic representation of a regular expression R to accept the language L(R) is

shown in figure 3.2. where q is the start state and f is the final state of machine M.

L(R)

Fig 3.2 Schematic representation of FA accepting L(R)

In the definition of a regular expression it is clear that if R and S are regular expression,

then R+S and R.S and R* are regular expressions which clearly uses three operators „+‟,

„-„ and „.‟. Let us take each case separately and construct equivalent machine. Let M1 =

(Q1, ∑1, Δ1, q1, f1) be a machine which accepts the language L(R1) corresponding to the

regular expression R1. Let M2 = (Q2, ∑2, Δ2, q2, f2) be a machine which accepts the

language L(R2) corresponding to the regular expression R2.

Case 1: R = R1 + R2. We can construct an NFA which accepts either L(R1) or L(R2)

which can be represented as L(R1 + R2) as shown in figure 3.3.

L(R1)

L(R2)

Fig. 3.3 To accept the language L(R1 + R2)

q0 Ε qf q0
a qf qf q0

ATC 17CS54

Dept of CSE,SJBIT Page 32

q1 M1
Ε

q2

M2

q0

Ε
q1 M1

L(R1)

Ε
q

f

Ε

q0
Ε

q1 M1
Ε

qf

It is clear from figure 3.3 that the machine can either accept L(R1) or L(R2). Here, q0 is

the start state of the combined machine and qf is the final state of combined machine M.

Case 2: R = R1 . R2. We can construct an NFA which accepts L(R1) followed by L(R2)

which can be represented as L(R1 . R2) as shown in figure 3.4.

L(R1) L(R2)

Fig. 3.4To accept the language L(R1 . R2)

It is clear from figure 3.4 that the machine after accepting L(R1) moves from state q1 to

f1. Since there is a Ε-transition, without any input there will be a transition from state f1 to

state q2. In state q2, upon accepting L(R2), the machine moves to f2 which is the final

state. Thus, q1 which is the start state of machine M1 becomes the start state of the

combined machine M and f2 which is the final state of machine M2, becomes the final

state of machine M and accepts the language L(R1.R2).

Case 3: R = (R1)
*. We can construct an NFA which accepts either L(R1)

*) as shown in

figure 3.5.a. It can also be represented as shown in figure 3.5.b.

Ε

Ε

(a)

Ε

(b)

Fig. 3.5 To accept the language L(R1)*

It is clear from figure 3.5 that the machine can either accept Ε or any number of L(R1)s

thus accepting the language L(R1)
*. Here, q0 is the start state qf is the final state.

Obtain an NFA which accepts strings of a‟s and b‟s starting with the string ab.

The regular expression corresponding to this language is ab(a+b)*.

ATC 17CS54

Dept of CSE,SJBIT Page 33

4
a

5

6
b

7

Ε 4
a

5 Ε

3 8

Ε 6
b

7 Ε

Ε 4

Ε

a
5 Ε

2
Ε

3

Ε

8
Ε

9

6
b

Ε

7 Ε

0
a

1
b

2

Ε

Ε 4
a

5 Ε

0
a

1
b

2
Ε

3

Ε 6
b

7

8

Ε

Ε
9

Ε

Step 1: The machine to accept „a‟ is shown below.

Step 2: The machine to accept „b‟ is shown below.

Step 3: The machine to accept (a + b) is shown below.

Step 4: The machine to accept (a+b)* is shown below.

Step 5: The machine to accept ab is shown below.

Step 6: The machine to accept ab(a+b)* is shown below.

Fig. 3.6 To accept the language L(ab(a+b)*)

ATC 17CS54

Dept of CSE,SJBIT Page 34

1 2 4 3 1 2

r1 r r

q0 q1

Obtain the regular expression from FA

Theorem: Let M = (Q, ∑, Δ, q0, A) be an FA recognizing the language L. Then there

exists an equivalent regular expression R for the regular language L such that L = L(R).

The general procedure to obtain a regular expression from FA is shown below. Consider

the generalized graph

r

Fig. 3.9 Generalized transition graph

where r1, r2, r3 and r4 are the regular expressions and correspond to the labels for the

edges. The regular expression for this can take the form:

r = r *r (r + r r *r)* (3.1)

Note:

1. Any graph can be reduced to the graph shown in figure 3.9. Then substitute the

regular expressions appropriately in the equation 3.1 and obtain the final regular

expression.

2. If r3 is not there in figure 3.9, the regular expression can be of the form

r = r1
*r2 r4

* (3.2)

3. If q0 and q1 are the final states then the regular expression can be of the form

r = r1* + r1
*r2 r4

* (3.3)

Obtain a regular expression for the FA shown below:

0

0,1

1

q0 q1

1
0 1 0

q2 q3

ATC 17CS54

Dept of CSE,SJBIT Page 35

0 1

q0
1

q1

The figure can be reduced as shown below:

It is clear from this figure that the machine accepts strings of 01‟s and 10‟s of any length

and the regular expression can be of the form

(01 + 10)*

What is the language accepted by the following FA

0,

Since, state q2 is the dead state, it can be removed and the following FA is obtained.

The state q0 is the final state and at this point it can accept any number of 0‟s which can

be represented using notation as

0*

q1 is also the final state. So, to reach q1 one can input any number of 0‟s followed by 1

and followed by any number of 1‟s and can be represented as

0*11*

So, the final regular expression is obtained by adding 0* and 0*11*. So, the regular

expression is

R.E = 0* + 0*11*

= 0* (∈ + 11*)

= 0* (∈ + 1+)

= 0* (1*) = 0*1*

It is clear from the regular expression that language consists of any number of 0‟s

(possibly Ε) followed by any number of 1‟s(possibly Ε).

01

q0

10

0 1

q0
0

1
q1 q2

ATC 17CS54

Dept of CSE,SJBIT Page 36

2.5 :Applications of Regular Expressions

Pattern Matching refers to a set of objects with some common properties. We can match

an identifier or a decimal number or we can search for a string in the text.

An application of regular expression in UNIX editor ed.

In UNIX operating system, we can use the editor ed to search for a specific pattern in the

text. For example, if the command specified is

/acb*c/

then the editor searches for a string which starts with ac followed by zero or more b‟s and

followed by the symbol c. Note that the editor ed accepts the regular expression and

searches for that particular pattern in the text. As the input can vary dynamically, it is

challenging to write programs for string patters of these kinds.

ATC 17CS54

Dept of CSE,SJBIT Page 37

0 1

q0
0,1

q1
0, 1

q2

Ε

Ε 4
a

5 ∈

a b Ε
0 1 2 3 8

∈
9

Ε 6 Ε

b

Ε

7

Unit- 2: Recommended Questions:

1. Obtain an NFA to accept the following language L = {w | w ∈ abab
n
 or aba

n
 where n ≥ 0}

2. Convert the following NFA into an equivalent DFA.

3. Convert the following NFA to its equivalent DFA.

4. P.T. Let R be a regular expression. Then there exists a finite automaton M = (Q,

∑, Δ, q0, A) which accepts L(R).

5. Obtain an NFA which accepts strings of a‟s and b‟s starting with the string ab.

6. Define grammar? Explain Chomsky Hierarchy? Give an example
7. (a) Obtain grammar to generate string consisting of any number of a‟s and b‟s with at

least one b.

• Obtain a grammar to generate the following language: L ={WW
R
 where

W∈ {a, b}*}

8. (a) Obtain a grammar to generate the following language: L = { 0
m
 1

m
2

n
 | m>= 1 and

n>=0}

• Obtain a grammar to generate the set of all strings with no more than three a‟s

when Σ = {a, b}

9. Obtain a grammar to generate the following language:

(i) L = { w | n a(w) > n b(w) }

(ii) L = { a
n
 b

m
 c

k
 | n+2m = k for n>=0, m>=0}

10. Define derivation , types of derivation , Derivation tree & ambiguous grammar. Give
example for each.

11. Is the following grammar ambiguous?

S  aB | bA

A  aS | bAA |a

B  bS | aBB | b

12. Define PDA. Obtain PDA to accept the language L = {a
n
 b

n
 | n>=1} by a final state.

13. write a short note on application of context free grammar.

ATC 17CS54

Dept of CSE,SJBIT Page 38

UNIT 3: PROPERTIES OF REGULAR LANGUAGES

3.1 Regular languages

3.2 proving languages not to be regular languages

3.3 closure properties of regular languages

3.4 decision properties of regular languages

3.5 equivalence and minimization of automata

ATC 17CS54

Dept of CSE,SJBIT Page 39

3.1 :Regular languages

In theoretical computer science and formal language theory, a regular language is a

formal language that can be expressed using a regular expression. Note that the "regular

expression" features provided with many programming languages are augmented with

features that make them capable of recognizing languages that can not be expressed by

the formal regular expressions (as formally defined below).

In the Chomsky hierarchy, regular languages are defined to be the languages that are

generated by Type-3 grammars (regular grammars). Regular languages are very useful in

input parsing and programming language design.

Formal definition

The collection of regular languages over an alphabet Σ is defined recursively as follows:

• The empty language Ø is a regular language.

• For each a Σ (a belongs to Σ), the singleton language {a} is a regular language.

• If A and B are regular languages, then A B (union), A • B (concatenation), and

A* (Kleene star) are regular languages.

• No other languages over Σ are regular.

See regular expression for its syntax and semantics. Note that the above cases are in

effect the defining rules of regular expression

Examples

All finite languages are regular; in particular the empty string language {ε} = Ø* is

regular. Other typical examples include the language consisting of all strings over the

alphabet {a, b} which contain an even number of as, or the language consisting of all

strings of the form: several as followed by several bs.

A simple example of a language that is not regular is the set of strings .

Intuitively, it cannot be recognized with a finite automaton, since a finite automaton has

finite memory and it cannot remember the exact number of a's. Techniques to prove this

fact rigorously are given below.

proving languages not to be regular languages

• Pumping Lemma

Used to prove certain languages like L = {0n1n | n ≥ 1} are not regular.

• Closure properties of regular languages

Used to build recognizers for languages that are constructed from other languages

by certain operations.

Ex. Automata for intersection of two regular languages

ATC 17CS54

Dept of CSE,SJBIT Page 40

1 2 3 4 5

1
0

1
0

6
0,1

0,1

• Decision properties of regular languages

– Used to find whether two automata define the same language

– Used to minimize the states of DFA

eg. Design of switching circuits.

Pumping Lemma for regular languages (Explanation)

Let L = {0n1n | n ≥ 1}

There is no regular expression to define L. 00*11* is not the regular expression defining

L. Let L= {0212}

0 0 1 1

State 6 is a trap state, state 3 remembers that two 0‟s have come and from there state 5

remembers that two 1‟s are accepted.

This implies DFA has no memory to remember arbitrary „n‟. In other words if we have to

remember n, which varies from 1 to ∞ have to have infinite states, which is not

possible with a finite state machine, which has finite number of states.

Pumping Lemma (PL) for Regular Languages

Theorem:

Let L be a regular language. Then there exists a constant „n‟ (which

depends on L) such that for every string w in L such that |w| ≥ n, we can break w into

three strings, w=xyz, such that:

1. |y| > 0

2. |xy| ≤ n

3. For all k ≥ 0, the string xykz is also in L.

PROOF:

ATC 17CS54

Dept of CSE,SJBIT Page 41

Let L be regular defined by an FA having „n‟ states. Let w= a1,a2 ,a3 an and is in L.

|w| = n ≥ n. Let the start state be P1. Let w = xyz where x= a1,a2 ,a3 ----- an-1 , y=an and z =

Ε.

Therefore xykz = a1 ------- an-1 (an)
k Ε

k=0 a1 ------- an-1 is accepted

k=1 a1 ------- an is accepted

k=2 a1 ------- an+1 is accepted

k=10 a1 ------- an+9 is accepted and so on.

Uses of Pumping Lemma: - This is to be used to show that, certain languages are not

regular. It should never be used to show that some language is regular. If you want to

show that language is regular, write separate expression, DFA or NFA.

General Method of proof: -

(i) Select w such that |w| ≥ n

(ii) Select y such that |y| ≥ 1

(iii) Select x such that |xy| ≤ n

(iv) Assign remaining string to z

(v) Select k suitably to show that, resulting string is not in L.

Example 1.

To prove that L={w|w Ε anbn, where n ≥ 1} is not regular

ATC 17CS54

Dept of CSE,SJBIT Page 42

Proof:

Let L be regular. Let n is the constant (PL Definition). Consider a word w in L.

Let w = anbn, such that |w|=2n. Since 2n > n and L is regular it must satisfy PL.

xy contain only a‟s. (Because |xy| ≤ n).

Let |y|=l, where l > 0 (Because |y| > 0).

Then, the break up of x. y and z can be as follows

from the definition of PL , w=xykz, where k=0,1,2, ----- ∞, should belong to L.

That is an-l (al)k bn ∈ L, for all k=0,1,2, ----- ∞

Put k=0. we get an-l bn ∉ L.

Contradiction. Hence the Language is not regular.

Example 2.

To prove that L={w|w is a palindrome on {a,b}*} is not regular. i.e., L={aabaa,

aba, abbbba,…}

Proof:

Let L be regular. Let n is the constant (PL Definition). Consider a word w in L.

Let w = anban, such that |w|=2n+1. Since 2n+1 > n and L is regular it must satisfy PL.

xy contain only a‟s. (Because |xy| ≤ n).

Let |y|=l, where l > 0 (Because |y| > 0).

That is, the break up of x. y and z can be as follows

from the definition of PL w=xykz, where k=0,1,2, ------ ∞, should belong to L.

That is an-l (al) k ba n ∈ L, for all k=0,1,2, ------ ∞.

ATC 17CS54

Dept of CSE,SJBIT Page 43

Put k=0. we get an-l b an∉ L, because, it is not a palindrome. Contradiction, hence the

language is not regular

.

Example 3.

To prove that L={ all strings of 1‟s whose length is prime} is not regular. i.e.,

L={12, 13 ,15 ,17 ,111 , ---- }

Proof: Let L be regular. Let w = 1p where p is prime and | p| = n +2

Let y = m.

by PL xykz ∈ L

| xykz | = | xz | + | yk | Let k = p-m

= (p-m) + m (p-m)

= (p-m) (1+m) ------- this can not be prime

if p-m ≥ 2 or 1+m ≥ 2

1. (1+m) ≥ 2 because m ≥ 1

2. Limiting case p=n+2

(p-m) ≥ 2 since m ≤n

Example 4.

To prove that L={ 0i2 | i is integer and i >0} is not regular. i.e., L={02, 04 ,09 ,016

,025 ,----}

Proof: Let L be regular. Let w = 0n2 where |w| = n2 ≥ n

by PL xykz ∈ L, for all k = 0,1,---

Select k = 2

| xy2z | = | xyz | + | y |

= n2 + Min 1 and Max n

Therefore n2 < | xy2z | ≤ n2 + n

n2 < | xy2z | < n2 + n + 1+n adding 1 + n (Note that less than or equal to

is n2 < | xy2z | < (n + 1)2 replaced by less than sign)

Say n = 5 this implies that string can have length > 25 and < 36

which is not of the form 0i2.

a) Show that following languages are not regular

ATC 17CS54

Dept of CSE,SJBIT Page 44

3.3 :closure properties of regular languages

1. The union of two regular languages is regular.

2. The intersection of two regular languages is regular.

3. The complement of a regular language is regular.

4. The difference of two regular languages is regular.

5. The reversal of a regular language is regular.

6. The closure (star) of a regular language is regular.

7. The concatenation of regular languages is regular.

8. A homomorphism (substitution of strings for symbols) of a regular language is regular.

9. The inverse homomorphism of a regular language is regular

Closure under Union

Theorem: If L and M are regular languages, then so is L 𝖴 M.

Ex1.

Ex2.

L1={a,a3,a5, ---- }

L2={a2,a4,a6, ---- }

L1𝖴 L2 = {a,a2,a3,a4, ----}

RE=a(a)*

L1={ab, a2 b2, a3b3, a4b4, ---- }

L2={ab,a3 b3,a5b5,----- }

L1𝖴 L2 = {ab,a2b2, a3b3, a4b4, a5b5 --- }

RE=ab(ab)*

Closure Under Complementation

Theorem : If L is a regular language over alphabet S, then L = Σ* - L is also a regular

language.

Ex1.

Ex2.

L1={a,a3,a5, ---- }

Σ* -L1={e,a2,a4,a6, ----- }

RE=(aa)*

ATC 17CS54

Dept of CSE,SJBIT Page 45

Consider a DFA, A that accepts all and only the strings of 0‟s and 1‟s that end

in 01. That is L(A) = (0+1)*01. The complement of L(A) is therefore all string of 0‟s and

1‟s that do not end in 01

ATC 17CS54

Dept of CSE,SJBIT Page 46

Theorem: - If L is a regular language over alphabet Σ, then, L = Σ* - L is also a

regular language

Proof: - Let L =L(A) for some DFA. A=(Q, Σ, Δ, q0, F). Then L = L(B), where B is

the DFA (Q, Σ, Δ, q0, Q-F). That is, B is exactly like A, but the accepting states of A have

become non-accepting states of B, and vice versa, then w is in L(B) if and only if Δ^ (q0,

w) is in Q-F, which occurs if and only if w is not in L(A).

Closure Under Intersection

Theorem : If L and M are regular languages, then so is L ∩ M.

Ex1.

Ex2

Ex3.

L1={a,a2,a3,a4,a5,a6, --- }

L2={a2,a4,a6, ---- }

L1L2 = {a2,a4,a6, --- }

RE=aa(aa)*

L1={ab,a3b3,a5b5,a7b7 --- }

L2={a2 b2, a4b4, a6b6,----- }

L1∩L2 = Φ

RE= Φ

Consider a DFA that accepts all those strings that have a 0.

Consider a DFA that accepts all those strings that have a 1.

The product of above two automata is given below.

This automaton accepts the intersection of the first two languages: Those languages that

have both a 0 and a 1. Then pr represents only the initial condition, in which we have

ATC 17CS54

Dept of CSE,SJBIT Page 47

seen neither 0 nor 1. Then state qr means that we have seen only once 0‟s, while state ps

represents the condition that we have seen only 1‟s. The accepting state qs represents the

condition where we have seen both 0‟s and 1‟s.

Ex 4 (on intersection)

Write a DFA to accept the intersection of L1=(a+b)*a and L2=(a+b)*b that is for L1 ∩

L2.

DFA for L1 ∩ L2 = Φ (as no string has reached to final state (2,4))

Ex5 (on intersection)

Find the DFA to accept the intersection of L1=(a+b)*ab (a+b)* and L2=(a+b)*ba

(a+b)* that is for L1 ∩ L2

ATC 17CS54

Dept of CSE,SJBIT Page 48

DFA for L1 ∩ L2

Closure Under Difference

Theorem : If L and M are regular languages, then so is L – M.

Ex.

Reversal

L1={a,a3,a5,a7, ---- }

L2={a2,a4,a6, ---- }

L1-L2 = {a,a3,a5,a7--- }

RE=a(a)*

Theorem : If L is a regular language, so is LR

Ex.

L={001,10,111,01}

LR={100,01,111,10}

To prove that regular languages are closed under reversal.

Let L = {001, 10, 111}, be a language over Σ={0,1}.

LR is a language consisting of the reversals of the strings of L.

That is LR = {100,01,111}.

If L is regular we can show that LR is also regular.

Proof.

As L is regular it can be defined by an FA, M = (Q, Σ , Δ, q0, F), having only one final

state. If there are more than one final states, we can use ∈ - transitions from the final

states going to a common final state.

ATC 17CS54

Dept of CSE,SJBIT Page 49

Let FA, MR = (QR, ΣR , Δ R,q0
R,FR) defines the language LR,

Where QR = Q, ΣR = Σ, q0
R=F,FR=q0, and ΔR (p,a)-> q, iff Δ (q,a) -> p

Since MR is derivable from M, LR is also regular.

The proof implies the following method

1. Reverse all the transitions.

2. Swap initial and final states.

3. Create a new start state p0 with transition on ∈ to all the

accepting states of original DFA

Example

Let r=(a+b)* ab define a language L. That is

L = {ab, aab, bab,aaab, ----- }. The FA is as given below

The FA for LR can be derived from FA for L by swapping initial and final states and

changing the direction of each edge. It is shown in the following figure.

ATC 17CS54

Dept of CSE,SJBIT Page 50

Homomorphism

A string homomorphism is a function on strings that works by substituting a particular

string for each symbol.

Theorem : If L is a regular language over alphabet Σ, and h is a homomorphism on Σ,

then h (L) is also regular.

Ex.

The function h defined by h(0)=ab h(1)=c is a homomorphism.

h applied to the string 00110 is ababccab

L1= (a+b)* a (a+b)*

h : {a, b} {0, 1}*

Resulting :

h1(L) = (01 + 11)* 01 (01 + 11)*

h2(L) = (101 + 010)* 101 (101 + 010)*

h3(L) = (01 + 101)* 01 (01 + 101)*

Inverse Homomorphism

Theorem : If h is a homomorphism from alphabet S to alphabet T, and L is a regular

language over T, then h-1 (L) is also a regular language.

Ex.Let L be the language of regular expression (00+1)*.

Let h be the homomorphism defined by h(a)=01 and h(b)=10. Then h-1(L) is the language

of regular expression (ba)*.

ATC 17CS54

Dept of CSE,SJBIT Page 51

3.4 : decision properties of regular languages

1. is the language described empty?

2. Is a particular string w in the described language?

3. Do two descriptions of a language actually describe the same language?

This question is often called “equivalence” of languages.

Converting Among Representations

Converting NFA’s to DFA’s

Time taken for either an NFA or -NFA to DFA can be exponential in the number of states

of the NFA. Computing Ε-Closure of n states takes O(n3) time. Computation of DFA

takes O(n3) time where number of states of DFA can be 2n. The running time of NFA to

DFA conversion including Ε transition is O(n3 2n). Therefore the bound on the running

time is O(n3s) where s is the number of states the DFA actually has.

DFA to NFA Conversion

Conversion takes O(n) time for an n state DFA.

Automaton to Regular Expression Conversion

For DFA where n is the number of states, conversion takes O(n34n) by substitution

method and by state elimination method conversion takes O(n3) time. If we convert an

NFA to DFA and then convert the DFA to a regular expression it takes the time
3

O(n34n 2n)

Regular Expression to Automaton Conversion

Regular expression to Ε-NFA takes linear time – O(n) on a regular expression of length n.

Conversion from Ε-NFA to NFA takes O(n3) time.

Testing Emptiness of Regular Languages

Suppose R is regular expression, then

1. R = R1 + R2. Then L(R) is empty if and only if both L(R1) and L(R2) are

empty.
2. R= R1R2. Then L(R) is empty if and only if either L(R1) or L(R2) is empty.

3. R=R1* Then L(R) is not empty. It always includes at least Ε

4. R=(R1) Then L(R) is empty if and only if L(R1) is empty since they are the

same language.

Testing Emptiness of Regular Languages

Suppose R is regular expression, then

1. R = R1 + R2. Then L(R) is empty if and only if both L(R1) and L(R2) are

empty.

2. R= R1R2. Then L(R) is empty if and only if either L(R1) or L(R2) is empty.

ATC 17CS54

Dept of CSE,SJBIT Page 52

3. R=(R1)* Then L(R) is not empty. It always includes at least Ε

4. R=(R1) Then L(R) is empty if and only if L(R1) is empty since they are the

same language.

Testing Membership in a Regular Language

Given a string w and a Regular Language L, is w in L.

If L is represented by a DFA, simulate the DFA processing the string of input

symbol w, beginning in start state. If DFA ends in accepting state the answer is „Yes‟ ,

else it is „no‟. This test takes O(n) time

If the representation is NFA, if w is of length n, NFA has s states, running time of

this algorithm is O(ns2)

If the representation is Ε - NFA, Ε - closure has to be computed, then processing of

each input symbol , a , has 2 stages, each of which requires O(s2) time.

If the representation of L is a Regular Expression of size s, we can convert to an Ε

-NFA with almost 2s states, in O(s) time. Simulation of the above takes O(ns2) time on an

input w of length n

3.5 :Minimization of Automata (Method 1)

Let p and q are two states in DFA. Our goal is to understand when p and q (p ≠ q)

can be replaced by a single state.

Two states p and q are said to be distinguishable, if there is at least one string, w,

such that one of Δ^ (p,w) and Δ^ (q,w) is accepting and the other is not accepting.

Algorithm 1:

List all unordered pair of states (p,q) for which p ≠ q. Make a sequence of passes

through these pairs. On first pass, mark each pair of which exactly one element is in F.

On each subsequent pass, mark any pair (r,s) if there is an a∈ ∑ for which Δ (r,a) = p, Δ

(s,a) = q, and (p,q) is already marked. After a pass in which no new pairs are marked,

stop. The marked pair (p,q) are distinguishable.

Examples:

1. Let L = {∈ , a2, a4, a6, ….} be a regular language over ∑ = {a,b}. The FA is

shown in Fig 1.

Fig 2. gives the list of all unordered pairs of states (p,q) with p ≠ q.

ATC 17CS54

Dept of CSE,SJBIT Page 53

The boxes (1,2) and (2,3) are marked in the first pass according to the algorithm 1.

In pass 2 no boxes are marked because, Δ(1,a) Φ and Δ (3,a) 2. That is (1,3)
(Φ,2),

where Φ and 3 are non final states.

(1,b) Φ and (3,b)  Φ. That is (1,3) (Φ,Φ), where Φ is a non-final state. This

implies that (1,3) are equivalent and can replaced by a single state A.

Fig 3. Minimal Automata corresponding to FA in Fig 1

Minimization of Automata (Method 2)

Consider set {1,3}. (1,3) (2,2) and (1,3) (Φ,Φ). This implies state 1 and 3 are

equivalent and can not be divided further. This gives us two states 2,A. The resultant FA

is shown is Fig 3.

Example 2. (Method1):

Let r= (0+1)*10, then L(r) = {10,010,00010,110, ---}. The FA is given below

Following fig shows all unordered pairs (p,q) with p ≠ q

ATC 17CS54

Dept of CSE,SJBIT Page 54

The pairs marked 1 are those of which exactly one element is in F; They are marked on

pass 1. The pairs marked 2 are those marked on the second pass. For example (5,2) is one

of these, since (5,2)  (6,4), and the pair (6,4) was marked on pass 1.

From this we can make out that 1, 2, and 4 can be replaced by a single state 124

and states 3, 5, and 7 can be replaced by the single state 357. The resultant minimal FA is

shown in Fig. 6

The transitions of fig 4 are mapped to fig 6 as shown below

Example 2. (Method1):

(2,3) (4,6) this implies that 2 and 3 belongs to different group hence they are split in

level 2. similarly it can be easily shown for the pairs (4,5) (1,7) and (2,5) and so on.

ATC 17CS54

0 1 0,1

q0
0

1
q1 q2

a,b

q0
a

q1
b

q2

b
a

q3

a,b

Unit 3: Recommended questions

1. Let M = (Q, ∑, Δ, q0, A) be an FA recognizing the language L. Then there exists

an equivalent regular expression R for the regular language L such that L = L(R).

2. Obtain a regular expression for the FA shown below:

0

0,1

1

3. What is the language accepted by the following FA

4. Write short note on Applications of Regular Expressions

5. Obtain a DFA to accept strings of a‟s and b‟s starting with the string ab

6. Prove pumping lemma?

7. prove that L={w|w is a palindrome on {a,b}*} is not regular. i.e., L={aabaa, aba,

abbbba,…}

8. prove that L={ all strings of 1‟s whose length is prime} is not regular. i.e., L={12,

13 ,15 ,17 ,111 , --- }

Dept of CSE,SJBIT Page 55

q0 q1

1
0 1 0

q2 q3

ATC 17CS54

Dept of CSE,SJBIT Page 56

9. Show that following languages are not regular

• L={anbm | n, m ≥0 and n<m }

• L={anbm | n, m ≥0 and n>m }

• L={anbmcmdn | n, m ≥1 }

• L={an | n is a perfect square }

• L={an | n is a perfect cube }

10. Apply pumping lemma to following languages and understand why we cannot

complete proof

• L={anaba | n ≥0 }

• L={anbm | n, m≥0 }

11. P.T. If L and M are regular languages, then so is L 𝖴 M.

12. P.T. If L is a regular language over alphabet S, then L = Σ* - L is also a regular

language.

13. P.T. - If L is a regular language over alphabet Σ, then, L = Σ* - L is also a

regular language

14. Write a DFA to accept the intersection of L1=(a+b)*a and L2=(a+b)*b that is for

L1 ∩ L2.

15. Find the DFA to accept the intersection of L1=(a+b)*ab (a+b)* and L2=(a+b)*ba

(a+b)* that is for L1 ∩ L2

16. P.T. If L and M are regular languages, then so is L – M.

17. P.T. If L is a regular language, so is LR

18. If L is a regular language over alphabet Σ, and h is a homomorphism on Σ, then h

(L) is also regular.

19. If h is a homomorphism from alphabet S to alphabet T, and L is a regular language

over T, then h-1 (L) is also a regular language.

20. Design context-free grammar for the following cases

a) L={ 0n1n | n≥l }

b) L={aibjck| i≠j or j≠k}

21. Generate grammar for RE 0*1(0+1)*

ATC 17CS54

Dept of CSE,SJBIT Page 57

UNIT 4:Context Free Grammar and languages
4.1 Context free grammars
4.2 parse trees

4.3 Applications

4.4 ambiguities in grammars and languages

ATC 17CS54

Dept of CSE,SJBIT Page 58

4.1 : Context free grammar

Context Free grammar or CGF, G is represented by four components that is G=(V,T,P,S),

where V is the set of variables, T the terminals, P the set of productions and S the start

symbol.

Example: The grammar Gpal for palindromes is represented by

Gpal = ({P},{0,1}, A, P)

where A represents the set of five productions

1. P∈
2. P0

3. P1

4. P0P0

5. P1P1

Derivation using Grammar

4.2 : parse trees
Parse trees are trees labeled by symbols of a particular CFG.

Leaves: labeled by a terminal or ε.

Interior nodes: labeled by a variable.

Children are labeled by the right side of a

production for the parent.

Root: must be labeled by the start

symbol.

ATC 17CS54

Dept of CSE,SJBIT Page 59

Example: Parse Tree

S -> SS | (S) | ()

Example 1: Leftmost Derivation

The inference that a * (a+b00) is in the language of variable E can be reflected in a

derivation of that string, starting with the string E. Here is one such derivation:

E E * E  I * E  a * E 

a * (E)  a * (E + E)  a * (I + E)  a * (a + E) 

a * (a + I)  a * (a + I0)  a * (a + I00)  a * (a + b00)

Leftmost Derivation - Tree

Example 2: Rightmost Derivations

The derivation of Example 1 was actually a leftmost derivation. Thus, we can describe

the same derivation by:

E E * E  E *(E)  E * (E + E) 

E * (E + I)  E * (E +I0)  E * (E + I00)  E * (E + b00) 

E * (I + b00)  E * (a +b00)  I * (a + b00)  a * (a + b00)

ATC 17CS54

Dept of CSE,SJBIT Page 60

We can also summarize the leftmost derivation by saying

E  a * (a + b00), or express several steps of the derivation by expressions such as

E * E  a * (E).

Rightmost Derivation - Tree

There is a rightmost derivation that uses the same replacements for each variable,

although it makes the replacements in different order. This rightmost derivation is:

E  E * E  E * (E)  E * (E + E) 

E * (E + I)  E * (E + I0)  E * (E + I00)  E * (E + b00) 

E * (I + b00)  E * (a + b00)  I * (a + b00)  a * (a + b00)

This derivation allows us to conclude E  a * (a + b00)

Consider the Grammar for string(a+b)*c

EE + T | T

T T * F | F

F (E) | a | b | c

Leftmost Derivation

ETT*FF*F(E)*F(E+T)*F(T+T)*F(F+T)*F (a+T)*F (a+F)*F

(a+b)*F(a+b)*c

Rightmost derivation

ETT*FT*cF*c(E)*c(E+T)*c(E+F)*c

(E+b)*c(T+b)*c(F+b)*c(a+b)*c

Example 2:

Consider the Grammar for string (a,a)

S->(L)|a

L->L,S|S

Leftmost derivation

ATC 17CS54

S(L)(L,S)(S,S)(a,S)(a,a)

Rightmost Derivation

S(L)(L,S)(L,a)(S,a)(a,a)

The Language of a Grammar

If G(V,T,P,S) is a CFG, the language of G, denoted by L(G), is the set of terminal

strings that have derivations from the start symbol.

L(G) = {w in T | S  w}

Sentential Forms

Derivations from the start symbol produce strings that have a special role called

“sentential forms”. That is if G = (V, T, P, S) is a CFG, then any string in (V 𝖴 T)* such

that S Α is a sentential form. If S Α, then is a left – sentential form, and if S Α

,

then is a right – sentential form. Note that the language L(G) is those sentential

forms that are in T*; that is they consist solely of terminals.

For example, E * (I + E) is a sentential form, since there is a derivation

E  E * E  E * (E)  E * (E + E)  E * (I + E)

However this derivation is neither leftmost nor rightmost, since at the last step, the

middle E is replaced.

As an example of a left – sentential form, consider a * E, with the leftmost derivation.

E  E * E  I * E  a * E

Additionally, the derivation

E  E * E  E * (E)  E * (E + E)

Shows that

E * (E + E) is a right – sentential form.

4.3 : Applications of Context – Free Grammars

• Parsers

• The YACC Parser Generator

• Markup Languages

• XML and Document typr definitions

The YACC Parser Generator

E E+E | E*E | (E)|id

%{ #include <stdio.h>

%}

%token ID id

%%

Exp : id { $$ = $1 ; printf ("result is %d\n", $1);}

| Exp „+‟ Exp {$$ = $1 + $3;}

| Exp „*‟ Exp {$$ = $1 * $3; }

Dept of CSE,SJBIT Page 61

ATC 17CS54

Dept of CSE,SJBIT Page 62

| „(„ Exp „)‟ {$$ = $2; }

;

%%

int main (void) {

return yyparse ();

}

void yyerror (char *s) {

fprintf (stderr, "%s\n", s);

}

%{

#include "y.tab.h"

%}

%%

[0-9]+ {yylval.ID = atoi(yytext); return id;}

[\t \n] ;

[+ * ()] {return yytext[0];}

. {ECHO; yyerror ("unexpected character");}

%%

Example 2:
%{

#include <stdio.h>

%}

%start line

%token <a_number> number

%type <a_number> exp term factor

%%

line : exp ';' {printf ("result is %d\n", $1);}

;

exp : term {$$ = $1;}

| exp '+' term {$$ = $1 + $3;}

| exp '-' term {$$ = $1 - $3;}

term : factor {$$ = $1;}

| term '*' factor {$$ = $1 * $3;}

| term '/' factor {$$ = $1 / $3;}

;

factor : number {$$ = $1;}

| '(' exp ')' {$$ = $2;}

;

%%

int main (void) {

return yyparse ();

}

void yyerror (char *s) {

fprintf (stderr, "%s\n", s);

}

ATC 17CS54

Dept of CSE,SJBIT Page 63

%{

#include "y.tab.h"

%}

%%

[0-9]+ {yylval.a_number = atoi(yytext); return number;}

[\t\n] ;

[-+*/();] {return yytext[0];}

. {ECHO; yyerror ("unexpected character");}

%%

Markup Languages

Functions

• Creating links between documents

• Describing the format of the document

Example

The Things I hate

1. Moldy bread

2. People who drive too slow

In the fast lane

HTML Source

<P> The things I hate:

 Moldy bread

People who drive too slow

In the fast lane

HTML Grammar

• Char a | A | …

• Text e | Char Text

• Doc e | Element Doc

• Element Text |
 Doc |
 <p> Doc |
 List | …

5. List-Item
6. List

 Doc
e | List-Item List

Start symbol

ATC 17CS54

Dept of CSE,SJBIT Page 64

XML and Document type definitions.

1. AE1,E2.

2. AE1 | E2.

3. A(E1)*

4. A(E1)+

5. A(E1)?

4.4 :Ambiguity

ABC

BE1

CE2

AE1

AE2

ABA

AΕ

BE1

ABA

AB

BE1

AΕ

AE1

A context – free grammar G is said to be ambiguous if there exists some w ∈ L(G) which

has at least two distinct derivation trees. Alternatively, ambiguity implies the existence of

two or more left most or rightmost derivations.

Ex:-

Consider the grammar G=(V,T,E,P) with V={E,I}, T={a,b,c,+,*,(,)}, and productions.

EI,

EE+E,

EE*E,

E(E),

Ia|b|c

Consider two derivation trees for a + b * c.

ATC 17CS54

Dept of CSE,SJBIT Page 65

Now unambiguous grammar for the above

Example:

ET, TF, FI, EE+T, TT*F,

F(E), Ia|b|c

Inherent Ambiguity

A CFL L is said to be inherently ambiguous if all its grammars are ambiguous

Example:

Condider the Grammar for string aabbccdd

SAB | C

A aAb | ab

BcBd | cd

C aCd | aDd

D->bDc | bc

Parse tree for string aabbccdd

ATC 17CS54

 Unit 4: Recommended Questions

1) Design context-free grammar for the following cases

a) L={ 0n1n | n≥l }

b) L={aibjck| i≠j or j≠k}

2) The following grammar generates the language of RE

0*1(0+1)*

S  A|B

A  0A|Ε

B  0B|1B|Ε

Give leftmost and rightmost derivations of the following strings

a) 00101 b) 1001 c) 00011

3) Consider the grammar

S  aS|aSbS|Ε

Show that deviation for the string aab is ambiguous

4) Suppose h is the homomorphism from the alphabet {0,1,2} to the alphabet { a,b}

defined by h(0) = a; h(1) = ab &

h(2) = ba

a) What is h(0120) ?

b) What is h(21120) ?

c) If L is the language L(01*2), what is h(L) ?

d) If L is the language L(0+12), what is h(L) ?

e) If L is the language L(a(ba)*) , what is h-1(L) ?

5) Design context-free grammar for the following cases

a) L={ 0n1n | n≥l }

b) L={aibjck| i≠j or j≠k}

6) The following grammar generates the language of RE

0*1(0+1)*

S  A|B

A  0A|Ε

B  0B|1B|Ε

Give leftmost and rightmost derivations of the following strings

a) 00101 b) 1001 c) 00011

7) Consider the grammar

S  aS|aSbS|Ε

Dept of CSE,SJBIT Page 66

ATC 17CS54

Dept of CSE,SJBIT Page 67

Show that deviation for the string aab is ambiguous

8) Suppose h is the homomorphism from the alphabet {0,1,2} to the alphabet { a,b}

defined by h(0) = a; h(1) = ab &

h(2) = ba

a) What is h(0120) ?

b) What is h(21120) ?

c) If L is the language L(01*2), what is h(L) ?

d) If L is the language L(0+12), what is h(L) ?

e) If L is the language L(a(ba)*) , what is h-1(L) ?

ATC 17CS54

Dept of CSE,SJBIT Page 68

UNIT-5: PUSH DOWN AUTOMATA

5.1: Definition of the pushdown automata

5.2: The languages of a PDA

5.3: Equivalence of PDA and CFG
5.4: Deterministic pushdown automata

ATC 17CS54

Dept of CSE,SJBIT Page 69

5.1 :Definition of pushdown Automata:

As Fig. 5.1 indicates, a pushdown automaton consists of three components: 1) an input

tape, 2) a control unit and 3) a stack structure. The input tape consists of a linear

configuration of cells each of which contains a character from an alphabet. This tape can

be moved one cell at a time to the left. The stack is also a sequential structure that has a

first element and grows in either direction from the other end. Contrary to the tape head

associated with the input tape, the head positioned over the current stack element can

read and write special stack characters from that position. The current stack element is

always the top element of the stack, hence the name ``stack''. The control unit contains

both tape heads and finds itself at any moment in a particular state.

Figure 5.1: Conceptual Model of a Pushdown Automaton

A (non-deterministic) finite state pushdown automaton (abbreviated PDA or, when the

context is clear, an automaton) is a 7-tuple = (X, Z, , R, zA, SA, ZF), where

• X = {x1,
... , xm} is a finite set of input symbols. As above, it is also called an

alphabet. The empty symbol is not a member of this set. It does, however, carry

its usual meaning when encountered in the input.

• Z = {z1,
... zn} is a finite set of states.

• = {s1,
... , sp} is a finite set of stack symbols. In this case .

• R ((X { })×Z×)×(Z×)) is the transition relation.

• zA is the initial state.

• SA is the initial stack symbol.

• ZF K is a distinguished set of final states

ATC 17CS54

Dept of CSE,SJBIT Page 70

5.2 The language of a PDA

There are two ways to define the language of a PDA (

). because there are two notions of acceptance:

Acceptance by final state

That is the PDA accepts the word if there is any sequence of IDs starting from

and leading to , where is one of the final states. Here it

doesn't play a role what the contents of the stack are at the end.

uld accept because

. Hence we conclude .

On the other hand since there is no successful sequence of IDs starting with

we know that .

Acceptance by empty stack

That is the PDA accepts the word if there is any sequence of IDs starting from

and leading to , in this case the final state plays no role.

If we specify a PDA for acceptance by empty stack we will leave out the set of

final states and just use .

Our example automaton also works if we leave out and use acceptance by

empty stack.

We can always turn a PDA which use one acceptance method into one which uses the

other. Hence, both acceptance criteria specify the same class of languages.

In our example the PDA wo

and

ATC 17CS54

Dept of CSE,SJBIT Page 71

CFG
PDA by

empty stack
PDA by

Final state

5.3 :Equivalence of PDA and CFG

The aim is to prove that the following three classes of languages are same:

1. Context Free Language defined by CFG

2. Language accepted by PDA by final state

3. Language accepted by PDA by empty stack

It is possible to convert between any 3 classes. The representation is shown in figure 1.

Figure 1: Equivalence of PDA and CFG

From CFG to PDA:

Given a CFG G, we construct a PDA P that simulates the leftmost derivations of G. The

stack symbols of the new PDA contain all the terminal and non-terminals of the CFG.

There is only one state in the new PDA; all the rest of the information is encoded in the

stack. Most transitions are on , one for each production. New transitions are added,

each one corresponding to terminals of G. For every intermediate sentential form uA in

the leftmost derivation of w (initially w = uv for some v), M will have A on its stack

after reading u. At the end (case u = w) the stack will be empty.

Let G = (V, T, Q, S) be a CFG. The PDA which accepts L(G) by empty stack is given by:

P = ({q}, T, V T, δ, q, S) where δ is defined by:

1. For each variable A include a transition,

δ(q, , A) = {(q, b) | A b is a production of Q}

2. For each terminal a, include a transition

δ(q, a, a) = {(q,)}

CFG to PDA conversion is another way of constructing PDA. First construct CFG, and

then convert CFG to PDA.

ATC 17CS54

Dept of CSE,SJBIT Page 72

Example:

Convert the grammar with following production to PDA accepted by empty stack:

S 0S1 | A

A 1A0 | S |

Solution:

P = ({q}, {0, 1}, {0, 1, A, S}, δ, q, S), where δ is given by:

δ(q, , S) = {(q, 0S1), (q, A)}

δ(q, , A) = {(q, 1A0), (q, S), (q,)}

δ(q, 0, 0) = {(q,)}

δ(q, 1, 1) = {(q,)}

From PDA to CFG:

Let P = (Q, Σ, Γ, δ, q0, Z0) be a PDA. An equivalent CFG is G = (V, Σ, R, S), where

V = {S, [pXq]}, where p, q Q and X Γ, productions of R consists of

1. For all states p, G has productions S [q0Z0 p]

2. Let δ(q,a,X) = {(r, Y1Y2…Yk)} where a Σ or a =

number and r1r2 …rk are list of states. G has productions

[qXrk] a[rY1r1] [r1Y2r2] … [rk-1Ykrk]

If k = 0 then [qXr] a

Example:

k can be 0 or any

Construct PDA to accept if-else of a C program and convert it to CFG. (This does not

accept if –if –else-else statements).

Let the PDA P = ({q}, {i, e}, {X,Z}, δ, q, Z), where δ is given by:

δ(q, i, Z) = {(q, XZ)}, δ(q, e, X) = {(q,)} and δ(q, , Z) = {(q,)}

Solution:

Equivalent productions are:

S [qZq]

[qZq] i[qXq][qZq]

,

ATC 17CS54

Dept of CSE,SJBIT Page 73

[qXq] e

[qZq]

If [qZq] is renamed to A and [qXq] is renamed to B, then the CFG can be defined by:

G = ({S, A, B}, {i, e}, {S A, A iBA | , B e}, S)

Example:

Convert PDA to CFG. PDA is given by P = ({p,q}, {0,1}, {X,Z}, δ, q, Z)), Transition

function δ is defined by:

δ(q, 1, Z) = {(q, XZ)}

δ(q, 1, X) = {(q, XX)}

δ(q, , X) = {(q,)}

δ(q, 0, X) = {(p, X)}

δ(p, 1, X) = {(p,)}

δ(p, 0, Z) = {(q, Z)}

Solution:

Add productions for start variable

S [qZq] | [qZp]

For δ(q, 1, Z)= {(q, XZ)}

[qZq] 1[qXq][qZq]

[qZq] 1[qXp][pZq]

[qZp] 1[qXq][qZp]

[qZp] 1[qXp][pZp]

For δ(q, 1, X)= {(q, XX)}

[qXq] 1[qXq][qXq]

[qXq] 1[qXp][pXq]

[qXp] 1[qXq][qXp]

[qXp] 1[qXp][pXp]

For δ(q, , X) = {(q,)}

[qXq]

For δ(q, 0, X) = {(p, X)}

[qXq] 0[pXq]

[qXp] 0[pXp]

For δ(p, 1, X) = {(p,)}

[pXp] 1

ATC 17CS54

Dept of CSE,SJBIT Page 74

For δ(p, 0, Z) = {(q, Z)}

[pZq] 0[qZq]

[pZp] 0[qZp]

Renaming the variables [qZq] to A, [qZp] to B, [pZq] to C, [pZp] to D, [qXq] to E [qXp]

to F, [pXp] to G and [pXq] to H, the equivalent CFG can be defined by:

G = ({S, A, B, C, D, E, F, G, H}, {0,1}, R, S). The productions of R also are to be

renamed accordingly.

5.4 :Deterministic PDA

NPDA provides non-determinism to PDA. Deterministic PDA‟s (DPDA) are very useful

for use in programming languages. For example Parsers used in YACC are DPDA‟s.

Definition:

A PDA P= (Q, Σ, Γ, δ, q0, Z0, F) is deterministic if and only if,

1.δ(q,a,X) has at most one member for q Q, a Σ or a= and X Γ

2.If δ(q,a,X) is not empty for some a Σ, then δ(q, ,X) must be empty

DPDA is less powerful than nPDA. The Context Free Languages could be recognized by

nPDA. The class of language DPDA accept is in between than of Regular language and

CFL. NPDA can be constructed for accepting language of palindromes, but not by

DPDA.

ATC 17CS54

Dept of CSE,SJBIT Page 75

Example:

Construct DPDA which accepts the language L = {wcwR | w {a, b}*, c Σ}.

The transition diagram for the DPDA is given in figure 2.

0, Z0/0Z0

1, Z0/1Z0

0,0/00

1,1/11

0,1/ 01
1,0/ 10

q0

c,0/0

c,1/1

c, Z0/ Z0

0,0/ Ε

1,1/ Ε

q1

q2
Ε, Z0 /

Figure 2: DPDA L = {wcwR}

DPDA and Regular Languages:

The class of languages DPDA accepts is in between regular languages and CFLs. The

DPDA languages include all regular languages. The two modes of acceptance are not

same for DPDA.

To accept with final state:

If L is a regular language, L=L(P) for some DPDA P. PDA surely includes a stack, but

the DPDA used to simulate a regular language does not use the stack. The stack is

inactive always. If A is the FA for accepting the language L, then δP(q,a,Z)={(p,Z)} for

all p, q Q such that δA(q,a)=p.

To accept with empty stack:

Every regular language is not N(P) for some DPDA P. A language L = N(P) for some

DPDA P if and only if L has prefix property. Definition of prefix property of L states that

if x, y L, then x should not be a prefix of y, or vice versa. Non-Regular language

L=WcWR could be accepted by DPDA with empty stack, because if you take any x, y

L(WcWR), x and y satisfy the prefix property. But the language, L={0*} could be

accepted by DPDA with final state, but not with empty stack, because strings of this

language do not satisfy the prefix property. So N(P) are properly included in CFL L, ie.

N(P) L

ATC 17CS54

Dept of CSE,SJBIT Page 76

DPDA and Ambiguous grammar:

DPDA is very important to design of programming languages because languages DPDA

accept are unambiguous grammars. But all unambiguous grammars are not accepted by

DPDA. For example S 0S0|1S1| is an unambiguous grammar corresponds to the

language of palindromes. This is language is accepted by only nPDA. If L = N(P) for

DPDA P, then surely L has unambiguous CFG.

If L = L(P) for DPDA P, then L has unambiguous CFG. To convert L(P) to N(P) to have

prefix property by adding an end marker $ to strings of L. Then convert N(P) to CFG G‟.

From G‟ we have to construct G to accept L by getting rid of $.So add a new production

$ as a variable of G.

ATC 17CS54

Dept of CSE,SJBIT Page 77

UNIT 5 : Recommended questions

a. Convert to PDA, CFG with productions:

1. A aAA, A aS | bS | a

2. S SS | (S) |

3. S aAS | bAB | aB, A bBB | aS | a, B bA | a

b. Convert to CFG, PDA with transition function:

δ(q, 0, Z) = {(q, XZ)}

δ(q, 0, X) = {(q, XX)}

δ(q, , X) = {(p,)}

δ(p, 1, X) = {(p, XX)}

δ(q, 1, X) = {(q, X)}

δ(p, , X) = {(p,)}

δ(p, 1, Z) = {(p,)}

ATC 17CS54

Dept of CSE,SJBIT Page 78

Unit-6:PROPERTIES OF CONTEXT FREE LANGUAGES

6.1 Normal forms for CFGS

6.2The pumping lemma for CFGS

6.3closure properties of CFLS

ATC 17CS54

Dept of CSE,SJBIT Page 79

The goal is to take an arbitrary Context Free Grammar G = (V, T, P, S) and perform

transformations on the grammar that preserve the language generated by the grammar but

reach a specific format for the productions. A CFG can be simplified by eliminating

6.1 Normal forms for CFGS

How to simplify?

• Simplify CFG by eliminating

– Useless symbols

• Those variables or terminals that do not appear in any derivation of a terminal

string starting from Start variable

– - productions

• A , where A is a variable

– Unit production

• A B, A and B are variables

• Sequence to be followed

1. Eliminate - productions from G and obtain G1

2. Eliminate unit productions from G1 and obtain G2

3. Eliminate useless symbols from G2and obtain G3

1. Eliminate useless symbols:

Definition: Symbol X is useful for a grammar G = (V, T, P, S) if there is S * X

* w, w * . If X is not useful, then it is useless.

Omitting useless symbols from a grammar does not change the language generated

• Example

• Symbol X is useful if both

– X is generating

• If X *⇒ w,where w T*

– X is reachable

• If S *⇒ X

ATC 17CS54

Dept of CSE,SJBIT Page 80

C D

• Theorem:

– Let G=(V,T,P,S) be a CFG and assume that L(G)

grammar without useless symbols by

1. Eliminating non generating symbols

2. Eliminating symbols that are non reachable

• Elimination in the order of 1 followed by 2

1. Eliminating non generating symbols

Generating symbols follow to one of the categories below:

then G1=(V1,T1,P1,S) be a

1. Every symbol of T is generating

2. If A and is already generating, then A is generating

Non-generating symbols = V- generating symbols.

• Example : S AB|a, A a

– 1 followed by 2 gives S

– 2 followed by 1 gives S a

• A is still useless

• Not completely all useless symbols eliminated

• Eliminate non generating symbols

– Every symbol of T is generating

– If A y generating, then A is generating

• Example

1. G= ({S,A,B}, {a}, S AB|a, A a}, S) here B is non generating symbol

After eliminating B, G1= ({S,A}, {a}, {S a, A a},S)

2. S aS|A|C, A a, B aa, C aCb

After eliminating C gets, S aS|A, A a, B aa

2. Eliminate symbols that are non reachable

– Draw dependency graph for all productions

,

ATC 17CS54

Dept of CSE,SJBIT Page 81

S A

– If no edge reaching a variable X from Start

symbol, X is non reachable

• Example

1. G= ({S,A}, {a}, {S a, A a},S)

After eliminating A, G1= ({S}, {a}, {S a},S)

2. S aS|A, A a, B aa

After eliminating B, S aS|A, A a

• Example

– S AB | CA, B BC|AB, A a, C AB|b

1. Eliminate non generating symbols V1 = {A,C,S} P1 = {S CA, A a, C b }

2. Eliminate symbols that are non reachable

V2 = {A,C,S}

P2 = {S A a, C b

ExercCSEs

• Eliminate useless symbols from the grammar

1. P= {S aAa, A Sb|bCC, C abb, E aC}

2. P= {S aBa|BC, A aC|BCC,C a, B bcc, D E, E d }

3. P= {S aAa, A bBB, B ab, C aB }

4. P= {S aS|AB, A bA,B AA }

Eliminate - productions

• Most theorems and methods about grammars G assume L(G) does not contain

C xDy

ATC 17CS54

Dept of CSE,SJBIT Page 82

• Example: G with - productions

S  ABA, A aA | , B  bB |

The procedure to find out an equivalent G with out -productions

1. Find nullable variables

2. Add productions with nullable variables removed.

3. Remove -productions and duplicates

Step 1: Find set of nullable variables

Nullable variables: Variables that can be replaced by null (). If A * then A is a

nullable variable.

In the grammar with productions S ABA, A aA | , B bB | , A is nullable

because of the production A . B is nullable because of the production B

nullable because both A and B are nullable.

S is

Step 1: Algorithm to find nullable variables

V: set of variables

N0 {A | A in V, production A  }

repeat

Ni  Ni-1U{A| A in V, A Α, Α in Ni-1}

until Ni = Ni-1

• Step 2: For each production of the form A w, create all possible productions of the

form A w‟, where w‟ is obtained from w by removing one or more occurrences of

nullable variables

• Example:

S  ABA | BA | AA | AB | A | B |

A  aA | | a

B  bB | | b

• Step 3: The desired grammar consists of the original productions together with the

productions constructed in step 2, minus any productions of the form A

• Example:

S ABA | BA | AA | AB | A | B

A  aA | a

B  bB | b

PROBLEM:

.

ATC 17CS54

Dept of CSE,SJBIT Page 83

G = ({S,A,B,D}, {a}, { S aS|AB, A  B , D b},S)

• Solution:

Nullable variables = {S, A, B}

New Set of productions:

S aS | a

S AB | A | B

D b

G1= ({S,B,D}, {a}, { S aS|a|AB|A|B, D b}, S)

• Eliminate - productions from the grammar

Eliminate unit production

Definition:
• Unit production is of form A A and B are variables

Unit productions could complicate certain proofs and they also introduce extra steps into

derivations that technically need not be there. The algorithm for eliminating unit

productions from the set of production P is given below:

• Algorithm

1. Add all non unit productions to P1

2. For each unit production A B, add to P1 all productions A , where B is a non-

unit production in P.

3. Delete all the unit productions

Example (1): Consider the grammar with production

S  ABA | BA | AA | AB | A | B

A aA | a

B bB | b

Solution:

– Unit productions are S A, SB

– A and B are derivable

– Add productions from derivable

S ABA | BA | AA | AB | A | B | aA | a | bB | b

ATC 17CS54

Dept of CSE,SJBIT Page 84

S A B D

A  aA | a

B  bB | b

– Remove unit productions

S  ABA | BA | AA | AB | aA | a | bB | b

A  aA | a

B  bB | b

Example (2): S Aa | B, A a | bc | B, B  A | bb

Solution – Unit productions are

S  B, A  B, B  A, A and B are derivable

– Add productions from derivable and eliminate unit productions

S  bb | a | bc

A  a| bc | bb

B  bb | a | bc

Example (3) : Eliminate useless symbols, -productions and unit productions from

S  a | aA|B|C, A  aB| , B  aA, C  cCD, D  ddd

Soulution– Eliminate -productions

Nullable = {A}

P1 = {S  a|aA|B|C, A  aB, B  aA|a, C  cCD, D  ddd}

-- Eliminate unit productions

Unit productions: S  B, S C Derivable variables:B & C

P2 = {S  a|aA| cCD, A  aB, B  aA|a, C  cCD, D ddd}

– Eliminate useless symbols

• After eliminate non generating symbols

P3 = {S  a|aA, A aB, B  aA|a, D →ddd}

• After eliminate symbols that are non reachable

P4 = {S  a|aA, A -->aB, B -->aA|a}

• So the equivalent grammar G1 = ({S,A,B}, {a}, {S -->a|aA, A -->aB, B -->aA|a}, S)

Simplified Grammar:

ATC 17CS54

Dept of CSE,SJBIT Page 85

If you have to get a grammar without - productions, useless symbols and unit

productions, follow the sequence given below:

1. Eliminate - productions from G and obtain G1

2. Eliminate unit productions from G1 and obtain G2

3. Eliminate useless symbols from G2and obtain G3

Chomsky Normal Form (CNF)

• Every nonempty CFL without , has a grammar with productions of the form

1. A --> BC, where A, B, C

2. A --> a, where A and a

• Algorithm:

1. Eliminate useless symbols, -productions and unit productions from the grammar

2. Elimination of terminals on RHS of a production

a) Add all productions of the form A --> BC or A --> a to P1

b) Consider a production A -->X1X2…Xn with some terminals of RHS. If Xi is a terminal

say ai, then add a new variable Cai to V1 and a new production Cai -->ai to P1. Replace Xi

in A production of P by Cai

c) Consider A -->X1X2…Xn, where n 3 and all Xi„s are

variables. Introduce new productions A -->X1C1,

C1-->X2C2, … , Cn-2 -->Xn-1Xn to P1 and C1, C2, … ,Cn-2 to V1

Example (4): Convert to CNF:

S -->aAD, A --> aB | bAB, B -->b, D -->d

Solution – Step1: Simplify the grammar

• already simplified

– Step2a: Elimination of terminals on RHS

S -->aAD to S --> CaAD, Ca-->a

A -->aB to A --> CaB

A -->bAB to A --> CbAB, Cb-->b

– Step2b: Reduce RHS with 2 variables

S --> CaAD to S --> CaC1, C1 -->AD

A --> CbAB to A --> CbC2, C2-->AB

• Grammar converted to CNF:

T

ATC 17CS54

Dept of CSE,SJBIT Page 86

G1=({S,A,B,D,Ca,Cb,C1,C2}, {a,b},

{S --> CaC1,A --> CaB| CbC2, Ca-->a, Cb-->b, C1 -->AD, C2-->AB}, S)

Example (5): Convert to CNF:P={S -->ASB | , A --> aAS | a, B -->SbS | A | bb}

Solution: – Step1: Simplify the grammar

• Eliminate -productions (S -->)

P1={S -->ASB|AB, A -->aAS|aA|a, B-->SbS|Sb|bS|b|A|bb}

• Eliminate unit productions (B-->A)

P2={S -->ASB|AB, A -->aAS|aA|a, B-->SbS|Sb|bS|b|bb|aAS|aA|a}

• Eliminate useless symbols: no useless symbols

– Step2: Convert to CNF

P3={S -->AC1|AB, A --> CaC2|CaA|a, B -->SC3 | SCb | CbS | b | CbCb| CaC2|CaA|a,

Ca-->a, Cb -->b, C1 -->SB, C2 -->AS, C3 --> CbS }

ExercCSEs:

• Convert to CNF:

1. S -->aSa|bSb|a|b|aa|bb

2. S -->bA|aB, A -->bAA|aS|a, B -->aBB|bS|b

3. S-->Aba, A -->aab, B -->AC

4. S -->0A0|1B1|BB, A -->C, B -->S|A, C -->S|

5. S -->aAa|bBb| , A -->C|a, B -->C|b, C -->CDE| , D -->A|B|ab

6.2 :The Pumping Lemma for CFL

The pumping lemma for regular languages states that every sufficiently long string in a

regular language contains a short sub-string that can be pumped. That is, inserting as

many copies of the sub-string as we like always yields a string in the regular language.

The pumping lemma for CFL’s states that there are always two short sub-strings close

together that can be repeated, both the same number of times, as often as we like.

For example, consider a

CFL L={anbn | n 1}. Equivalent CNF grammar is having productions S AC | AB, A

 a, B b, C SB. The parse tree for the string a4b4

is given in figure 1. Both leftmost derivation and rightmost derivation have same parse

tree because the grammar is unambiguous.

ATC 17CS54

Dept of CSE,SJBIT Page 87

Figure 2: Extended Parse tree for
4 4

Figure : Parse tree for a4b4

Extend the tree by duplicating the terminals generated at each level on all lower levels.

The extended parse tree for the string a4b4

is given in figure 2. Number of symbols at each level is at most twice of previous level. 1

symbols at level 0, 2 symbols at 1, 4 symbols at 2 …2i symbols at level i. To have 2n

symbols at bottom level, tree must be having at least depth of n and level of at least n+1.

Pumping Lemma Theorem:
Let L be a CFL. Then there exists a constant k 0 such that if z is any string in L such

that |z| k, then we can write z = uvwxy such that

1. |vwx| k (that is, the middle portion is not too long).

2. vx (since v and x are the pieces to be “pumped”, at least one of the strings

we pump must not be empty).

3. For all i 0, uviwxiy is in L.

Proof:

The parse tree for a grammar G in CNF will be a binary tree. Let k = 2n+1, where n is the

number of variables of G. Suppose z L(G) and |z| k. Any parse tree for z must be of

depth at least n+1. The longest path in the parse tree is at least n+1, so this path must

contain at least n+1 occurrences of the variables. By pigeonhole principle, some variables

occur more than once along the path. Reading from bottom to top, consider the first pair

of same variable along the path. Say X has 2 occurrences. Break z into uvwxy such that

w is the string of terminals generated at the lower occurrence of X and vwx is the string

generated by upper occurrence of X.

ATC 17CS54

Dept of CSE,SJBIT Page 88

Example parse tree:

For the above example S has repeated occurrences, and the parse tree is shown in figure

3. w = ab is the string generated by lower occurrence of S and vwx = aabb is the string

generated by upper occurrence of S. So here u=aa, v=a, w=ab, x=b, y=bb.

Figure 3: Parse tree for a4b4

with repeated occurrences of S
Figure 4: sub- trees

Let T be the subtree rooted at upper occurrence of S and t be subtree rooted at lower

occurrence of S. These parse trees are shown in figure 4. To get uv2wx2y L, cut out t

and replace it with copy of T. The parse tree for uv2wx2y L is given in figure 5.

Cutting out t and replacing it with copy of T as many times to get a valid parse tree for

uviwxiy for i 1.

Figure 5: Parse tree

Figure 6: Parse tree for

To get uwy L, cut T out of the original tree and replace it with t to get a parse tree of

uv0wx0y = uwy as shown in figure 6.

Pumping Lemma game:

1. To show that a language L is not a CFL, assume L is context free.

ATC 17CS54

Dept of CSE,SJBIT Page 89

2. Choose an “appropriate” string z in L

3. Express z = uvwxy following rules of pumping lemma

4. Show that uvkwxky is not in L, for some k

5. The above contradicts the Pumping Lemma

6. Our assumption that L is context free is wrong

Example:

Show that L = {aibici | i 1} is not CFL

Solution:

Assume L is CFL. Choose an appropriate z = anbncn = uvwxy. Since |vwx| n then vwx

can either consists of

1. All a‟s or all b‟s or all c‟s

2. Some a‟s and some b‟s

3. Some b‟s and some c‟s

Case 1: vwx consists of all a‟s

If z = a2b2c2 and u =

a4b2c2 L

v = a, w = x = a and y = b2c2 then, uv2wx2y will be

Case 2: vwx consists of some a‟s and some b‟s

If z = a2b2c2 and u = a, v = a, w = , x = b, y = bc2, then uv2wx2y will be a3b3c2 L

Case 3: vwx consists of some b‟s and some c‟s

If z = a2b2c2 and u = a2b, v = b, w = c, x = , y = c, then uv2wx2y will be a2b3c2 L

If you consider any of the above 3 cases, uv2wx2y will not be having an equal number of

a‟s, b‟s and c‟s. But Pumping Lemma says uv2wx2y L. Can‟t contradict the pumping

lemma! Our original assumption must be wrong. So L is not context-free.

Example:

Show that L = {ww |w {0, 1}*} is not CFL

Solution:

, ,

ATC 17CS54

Dept of CSE,SJBIT Page 90

Assume L is CFL. It is sufficient to show that L1= {0m1n0m1n | m,n 0}, where n is

pumping lemma constant, is a CFL. Pick any z = 0n1n0n1n = uvwxy, satisfying the

conditions |vwx| n and vx .

This language we prove by taking the case of i = 0, in the pumping lemma satisfying the

condition uviwxiy for i 0.

z is having a length of 4n. So if |vwx| n, then |uwy| 3n. According to pumping lemma,

uwy L. Then uwy will be some string in the form of tt, where t is repeating. If so, n |t|

3n/2.

Suppose vwx is within first n 0’s: let vx consists of k 0‟s. Then uwy begins with 0n-k1n

|uwy| = 4n-k. If uwy is some repeating string tt, then |t| =2n-k/2. t does end in 0 but tt

ends with 1. So second t is not a repetition of first t.

Example: z = 03130313, vx = 02 then uwy = tt = 0130313, so first t = 0130 and second

t = 0213. Both t‟s are not same.

Suppose vwx consists of 1st block of 0’s and first block of 1’s: vx consists of only 0‟s

if x= , then uwy is not in the form tt. If vx has at least one 1, then |t| is at least 3n/2 and

first t ends with a 0, not a 1.

Very similar explanations could be given for the cases of vwx consists of first block of

1‟s and vwx consists of 1st block of 1‟s and 2nd block of 0‟s. In all cases uwy is expected

to be in the form of tt. But first t and second t are not the same string. So uwy is not in L

and L is not context free.

ATC 17CS54

Dept of CSE,SJBIT Page 91

Example:

Show that L={0i1j2i3j | i 1, j 1} is not CFL

Solution:

Assume L is CFL. Pick z = uvwxy = 0n1n2n3n where |vwx| n and vx

. vwx can consist of a substring of one of the symbols or straddles of two adjacent

symbols.

Case 1: vwx consists of a substring of one of the symbols

Then uwy has n of 3 different symbols and fewer than n of 4th symbol. Then uwy is not

in L.

Case 2: vwx consists of 2 adjacent symbols say 1 & 2

Then uwy is missing some 1‟s or 2‟s and uwy is not in L.

If we consider any combinations of above cases, we get uwy, which is not CFL. This

contradicts the assumption. So L is not a CFL.

6.3 :Closure Properties of CFL
Many operations on Context Free Languages (CFL) guarantee to produce CFL. A few do

not produce CFL. Closure properties consider operations on CFL that are guaranteed to

produce a CFL. The CFL‟s are closed under substitution, union, concatenation, closure

(star), reversal, homomorphism and inverse homomorphism. CFL‟s are not closed under

intersection (but the intersection of a CFL and a regular language is always a CFL),

complementation, and set-difference.

I. Substitution:

By substitution operation, each symbol in the strings of one language is replaced by an

entire CFL language

.

Example:

S(0) = {anbn| n 1}, S(1)={aa,bb} is a substitution on alphabet ={0, 1}.

Theorem:

If a substitution s assigns a CFL to every symbol in the alphabet of a CFL L, then s(L) is

a CFL.

Proof:

ATC 17CS54

Dept of CSE,SJBIT Page 92

Let G = (V, , P, S) be grammar for the CFL L. Let Ga = (Va, Ta, Pa, Sa) be the

grammar corresponding to each terminal a and V Va =

P , S) is a grammar for s(L) where

Then G = (V , T ,

• V = V Va

• T = union of Ta‟s all for a

•

•

• P consists of

o

o

o All productions in any Pa for a

o

o

o

o The productions of P, with each terminal a is replaced by Sa everywhere a

occurs.

Example:

L = {0n1n| n 1}, generated by the grammar S 0S1 | 01, s(0) = {anbm | m n},

generated by the grammar S aSb | A; A aA | ab, s(1) = {ab, abc}, generated by the

grammar S abA, A c |

. Rename second and third S‟s to S0 and S1, respectively. Rename second A to B.

Resulting grammars are:

S 0S1 | 01

S0 aS0b | A; A aA | ab

S1 abB; B c |

In the first grammar replace 0 by S0 and 1 by S1. The resulted grammar after substitution

is:

S S0SS1 | S0S1

S0 aS0b | A; A aA | ab S1 abB; B c |

II. Application of substitution:

a. Closure under union of CFL’s L1 and L2:

Use L={a, b}, s(a)=L1 and s(b)=L2. Then s(L)= L1 L2.

.

ATC 17CS54

Dept of CSE,SJBIT Page 93

How t

o get grammar for L1 L2 ?

Add new start symbol S and rules S S1 | S2

The grammar for L1 L2 is G = (V, T, P, S) where V = {V1 V2 S}, S (V1 V2)

and P = {P1 P2 {S S1 | S2 }}

Example:

L1 = {anbn | n 0}, L2 = {bnan | n 0}. Their corresponding grammars are

G1: S1 aS1b | , G2 : S2 bS2a |

The grammar for L1 L2 is

G = ({S, S1, S2}, {a, b}, {S S1 | S2, S1 aS1b | , S2 bS2a}, S).

b. Closure under concatenation of CFL’s L1 and L2:

Let L={ab}, s(a)=L1 and s(b)=L2. Then s(L)=L1L2

How to get grammar for L1L2?

Add new start symbol and rule S S1S2

The grammar for L1L2 is G = (V, T, P, S) where V = V1 V2 {S}, S V1 V2

and P = P1 P2 {S S1S2}

Example:

L1 = {anbn | n 0}, L2 = {bnan | n 0} then L1L2 = {anb{n+m}am | n, m 0}

Their corresponding grammars are

G1: S1 aS1b | , G2 : S2 bS2a |

The grammar for L1L2 is

G = ({S, S1, S2}, {a, b}, {S S1S2, S1 aS1b | , S2 bS2a}, S).

c. Closure under Kleene’s star (closure * and positive closure +) of CFL’s L1:

Let L = {a}* (or L = {a}+) and s(a) = L1. Then s(L) = L1* (or s(L) = L1
+).

Example:

ATC 17CS54

Dept of CSE,SJBIT Page 94

L1 = {anbn | n 0} (L1)* = {a{n1}b{n1} ... a{nk}b{nk} | k 0 and ni 0 for all i}

L2 = {a{n2} | n 1}, (L2)* = a*

How t

o get grammar for (L1)*:

Add new start symbol S and rules S SS1 | .

The grammar for (L1)* is

G = (V, T, P, S), where V = V1 {S}, S V1,

P= P1 {S SS1 | }

d. Closure under homomorphism of CFL Li for every ai :

Suppose L is a CFL over alphabet and h is a homomorphism on . Let s be a

substitution that replaces every a , by h(a). ie s(a) = {h(a)}. Then h(L) = s(L). ie h(L)

={h(a1)…h(ak) | k 0} where h(ai) is a homomorphism for every ai .

III. Closure under

IV. Reversal:

L is a CFL, so LR is a CFL. It is enough to reverse each production of a CFL for L, i.e.,

to substitute each production A by A R.

IV. Intersection:

The CFL‟s are not closed under intersection

Example:

The language L = {0n1n2n | n 1} is not context-free. But L1 = {0n1n2i | n 1, i 1}

is a CFL and L2 = {0i1n2n | n 1, i 1} is also a CFL. But L = L1 L2.

Corresponding grammars for L1: S AB; A 0A1 | 01; B 2B | 2 and corresponding

grammars for L2: S AB; A 0A | 0; B 1B2 | 12.

However, L = L1 L2 , thus intersection of CFL‟s is not CFL

ATC 17CS54

Dept of CSE,SJBIT Page 95

AND

FA

Intersection of

a. CFL and Regular Language:

Theorem: If L is CFL and R is a regular language, then L R is a CFL.

Accept/

Reject

PDA

Proof:

Stack

Figure 1: PDA for L ∩ R

P = (QP, , , P, qP, Z0, FP) be PDA to accept L by final state. Let A = (QA, , A, qA,

FA) for DFA to accept the Regular Language R. To get L R, we have to run a Finite

Automata in parallel with a push down automata as shown in figure 1. Construct PDA

P = (Q, , , , qo, Z0, F) where

• Q = (Qp X QA)

• qo = (qp, qA)

• F = (FPX FA)

• is in the form ((q, p), a, X) = ((r, s), g) such that

1. s = A(p, a)

2. (r, g) is in P(q, a, X)

That is for each move of PDA P, we make the same move in PDA P and also we carry

along the state of DFA A in a second component of P . P accepts a string w if and only

if both P and A accept w. ie w is in L R. The moves ((qp, qA), w, Z) |-*P ((q, p), ,

) are possible if and only if (qp, w, Z) |-*P (q, ,) moves and p = *(qA, w)

transitions are possible.

CFL and RL properties:

Theorem: The following are true about CFL‟s L, L1, and L2, and a regular language R.

1. Closure of CFL’s under set-difference with a regular language.

2.

ie

1. L - R is a CFL.

Proof:

ATC 17CS54

Dept of CSE,SJBIT Page 96

R is regular and regular language is closed under complement. So RC is also regular.

We know that L - R = L RC. We have already proved the closure of intersection of

a CFL and a regular language. So CFL is closed under set difference with a Regular

language.

2. CFL is not closed under complementation

LC is not necessarily a CFL

Proof:

Assume that CFLs were closed under complement. ie if L is a CFL then LC is a CFL.

Since CFLs are closed under union, L1
C L2

C is a CFL. By our assumption (L1
C

L2
C)C is a CFL. But (L1

C L2
C)C = L1 L2, which we just showed isn‟t

necessarily a CFL. Contradiction! . So our assumption is false. CFL is not closed

under complementation.

CFLs are not closed under set-difference.

ie

L1 - L2 is not necessarily a CFL.

Proof:

Let L1 = * - L. * is regular and is also CFL. But * - L = LC. If CFLs were

closed under set difference, then * - L = LC would always be a CFL. But CFL‟s

are not closed under complementation. So CFLs are not closed under set-difference.

ATC 17CS54

Dept of CSE,SJBIT Page 97

Unit 6: Recommended Question
1. Using pumping lemma for CFL prove that below languages are not context free

1. {0p | p is a prime}

2. {anbnci | i n}

2. Eliminate the non-generating symbols from S → aS | A | C, A →a, B → aa, C->aCb

3.Eliminate non-reachable symbols from G= ({S, A}, {a}, {S → a, A →a}, S)

4. Draw the dependency graph as given above. A is non-reachable from S. After

eliminating A, G1= ({S}, {a}, {S → a}, S)

5. Eliminate non-reachable symbols from S → aS | A, A → a, B → aa

6. Eliminate useless symbols from the grammar with productions S → AB | CA, B →BC

| AB, A →a, C → AB | b

7. Eliminate useless symbols from the grammar

P= {S → aAa, A →Sb | bCC, C →abb, E → aC}

P= {S → aBa | BC, A → aC | BCC, C →a, B → bcc, D → E, E →d}

P= {S → aAa, A → bBB, B → ab, C → aB}

P= {S → aS | AB, A → bA, B → AA}

8. Define context free grammar.

9. Explain properties of context free grammar

10. Define Chomsky normal form

11. Define grebech normal form

12. State and prove pumping lemma thorem

ATC 17CS54

Dept of CSE,SJBIT Page 98

UNIT -7: INTRODUCTION TO TURING MACHINES

7.1 problems that computers cannot solve

7.2 The turing machine

7.3 programming techniques for turing machines

7.4 extensions to the basic turing machines

7.5 turing machines and computers

ATC 17CS54

7.1 :Problems that computers cannot solve
Definition:

A Turing Machine (TM) is an abstract, mathematical model that describes what can and

cannot be computed. A Turing Machine consists of a tape of infinite length, on which

input is provided as a finite sequence of symbols. A head reads the input tape. The Turing

Machine starts at “start state” S0. On reading an input symbol it optionally replaces it

with another symbol, changes its internal state and moves one cell to the right or left.

7.2 The Turing machine

Definition:

A Turing Machine (TM) is an abstract, mathematical model that describes what can and

cannot be computed. A Turing Machine consists of a tape of infinite length, on which

input is provided as a finite sequence of symbols. A head reads the input tape. The Turing

Machine starts at “start state” S0. On reading an input symbol it optionally replaces it

with another symbol, changes its internal state and moves one cell to the right or left.

Notation for the Turing Machine :

TM = <S, T, S0, , H> where,

S is a set of TM states

T is a set of tape symbols

S0 is the start state

H S is a set of halting states

 : S x T S x T x {L,R} is the transition function

{L,R} is direction in which the head moves

L : Left R: Right

input symbols on infinite length tape

1 0 1 0 1 1 1 1 1 1 0

head

The Turing machine model uses an infinite tape as its unlimited memory. (This is

important because it helps to show that there are tasks that these machines cannot

perform, even though unlimited memory and unlimited time is given.) The input symbols

occupy some of the tape‟s cells, and other cells contain blank symbols.

Some of the characteristics of a Turing machine are:

1. The symbols can be both read from the tape and written on it.

2. The TM head can move in either directions – Left or Right.

3. The tape is of infinite length

4. The special states, Halting states and Accepting states, take immediate effect.

Turing Machine U+1:

Dept of CSE,SJBIT Page 99

ATC 17CS54

Dept of CSE,SJBIT Page 100

Given a string of 1s on a tape (followed by an infinite number of 0s), add one more 1 at

the end of the string.

Input : #111100000000…….

Output : #1111100000000……….

Initially the TM is in Start state S0. Move right as long as the input symbol is 1. When a 0

is encountered, replace it with 1 and halt.

Transitions:

(S0, 1) (S0, 1, R)

(S0, 0) (h , 1, STOP)

TM Example 2 :

TM: X-Y

Given two unary numbers x and y, compute |x-y| using a TM. For purposes of simplicity

we shall be using multiple tape symbols.

Ex: 5 (11111) – 3 (111) = 2 (11)

#11111b1110000…..

11b 000…

a) Stamp out the first 1 of x and seek the first 1 of y.

(S0, 1) (S1, _, R)

(S0, b) (h, b, STOP)
(S1, 1) (S1, 1, R)

(S1, b) (S2, b, R)

b) Once the first 1 of y is reached, stamp it out. If instead the input ends, then y has

finished. But in x, we have stamped out one extra 1, which we should replace. So, go to

some state s5 which can handle this.

(S2, 1) (S3, _, L)

(S2,_) (S2, _, R)

(S2, 0) (S5, 0, L)

c) State s3 is when corresponding 1s from both x and y have been stamped out. Now go

back to x to find the next 1 to stamp. While searching for the next 1 from x, if we reach

the head of tape, then stop.

(S3, _) (S3, _, L)

(S3,b) (S4, b, L)

(S4, 1) (S4, 1, L)

(S4, _) (S0, _, R)

ATC 17CS54

Dept of CSE,SJBIT Page 101

(S4, #) (h, #, STOP)

d) State s5 is when y ended while we were looking for a 1 to stamp. This means we have

stamped out one extra 1 in x. So, go back to x, and replace the blank character with 1 and

stop the process.

(S5, _) (S5, _, L)

(S5,b) (S6, b, L)

(S6, 1) (S6, 1, L)

(S6, _) (h, 1, STOP)

Solved examples:

TM Example 1: Design a Turing Machine to recognize 0n1n2n

ex: #000111222_ _ _ _ _…….

Step 1: Stamp the first 0 with X, then seek the first 1 and stamp it with Y, and then seek

the first 2 and stamp it with Z and then move left.

S0 , 0 S1 ,X,R

S1 , 0 S1 , 0 ,R

S1 , 1 S2 ,Y,R

S2 , 1

S2 , 2

S2 , 1,R

S3 ,Z, L

S0 = Start State, seeking 0, stamp it with X

S1 = Seeking 1, stamp it with Y

S2 = Seeking 2, stamp it with Z

Step 2: Move left until an X is reached, then move one step right.

S3 , 1

S3 ,Y

S3 , 0

S3 ,X

S3 , 1 , L

S3 ,Y, L

S3 , 0 , L

S0 , X, R

S3 = Seeking X, to repeat the process.

ATC 17CS54

S,

Step 3: Move right until the end of the input denoted by blank(_) is reached passing

through X Y Z s only, then the accepting state SA is reached.

S0 , Y S4 , Y, R

S4 , Y S4 , Y, R

S4 , Z S4 ,Z, R

S4 , SA,
, STOP

S4 = Seeking blank

These are the transitions that result in halting states.

S4 , 1 h, 1 ,STOP

S4 , 2 h, 2 ,STOP

S4 , SA,
, STOP

S0 , 1

S0 , 2

S1 , 2

h, 1 ,STOP

h, 2 ,STOP

h, 2,STOP

S2 , h,
, STOP

TM Example 2 : Design a Turing machine to accept a Palindrome

ex: #1011101_ _ _ _ _…….

Step 1: Stamp the first character (0/1) with _, then seek the last character by moving till a

_ is reached. If the last character is not 0/1 (as required) then halt the process

immediately.

S0 , 0

S0 ,1

S1 ,

S3 , 1

S2 ,

S5 , 0

Dept of CSE,SJBIT

S1 ,
, R

S2 ,
, R

3
, L

h, 1,STOP

S5 ,
, L

h, 0 ,SOP
T

Page 102

ATC 17CS54

Dept of CSE,SJBIT Page 103

S, S ,

Step 2: If the last character is 0/1 accordingly, then move left until a blank is reached to

start the process again.

S3 , 0 S4,
, L

S4 , 1 S4 , 1 ,L

S4 , 0 S4 , 0 ,L

S4 , S0 ,
, R

S5 , 1 S6 ,

S6 , 1 S6 , 1 ,L

S6 , 0 S6 , 0 ,L

S6 , S0 ,
, R

Step 3 : If a blank (_) is reached when seeking next pair of characters to match or when

seeking a matching character, then accepting state is reached.

S3 , SA,

, STOP

S5 , SA,
, STOP

0 A
, STOP

The sequence of events for the above given input are as follows:

#s010101_ _ _

#_s20101_ _ _

#_0s2101_ _ _

. . . .

#_0101s5_ _ _

#_010s6_ _ _ _

#_s60101_ _ _

#_s00101_ _ _

. . . .

#_ _ _ _ s5 _ _ _ _ _ _

#_ _ _ _ sA _ _ _ _ _ _

, L

ATC 17CS54

Dept of CSE,SJBIT Page 104

1-Stamper

2-Seeker

0-Seeker

2-Stamper

Modularization of TMs

Designing complex TM s can be done using modular approach. The main problem can be

divided into sequence of modules. Inside each module, there could be several state

transitions.

For example, the problem of designing Turing machine to recognize the language 0n1n2n

can be divided into modules such as 0-stamper, 1-stamper, 0-seeker, 1-seeker, 2-seeker

and 2-stamper. The associations between the modules are shown in the following figure:

TM: 0n1n2n

Load → Decode → Execute →Store

Universal Turing Machine

A Universal Turing Machine UTM takes an encoding of a TM and the input data as its

input in its tape and behaves as that TM on the input data.

A TM spec could be as follows:

TM = (S,S0,H,T,d)

Suppose, S={a,b,c,d}, S0=a, H={b,d} T={0,1}

Δ : (a,0) (b,1,R) , (a,1) (c,1,R) ,

(c,0) (d,0,R) and so on

then TM spec:

$abcd$abd01$a0b1Ra1c1Rc0d0R…….

where $ is delimiter

This spec along with the actual input data would be the input to the UTM.

This can be encoded in binary by assigning numbers to each of the characters appearing

in the TM spec.

The encoding can be as follows:

1-Seeker 0-Stamper

ATC 17CS54

Dept of CSE,SJBIT Page 105

L oad Decode Execute Store

$: 0000 0 : 0101

a : 0001 1 : 0110

b : 0010 L : 0111

c : 0011 R : 1000

d : 0100

So the TM spec given in previous slide can be encoded as:

0000.0001.0010.0011.0100.0000.0001.0000.0010.0100 ……

Hence TM spec can be regarded just as a number.

Sequence of actions in UTM:

Initially UTM is in the start state S0.

 Load the input which is TM spec.

 Go back and find which transition to apply.

 Make changes, where necessary.

 Then store the changes.

 Then repeat the steps with next input.

Hence, the sequence goes through the cycle:

7.3 :Extensions to Turing Machines

Proving Equivalence

For any two machines M1 from class C1 and M2 from class C2:

M2 is said to be at least as expressive as M1

if L(M2) = L(M1) or if M2 can simulate M1.

M1 is said to be at least as expressive as M2

if L(M1) = L(M2) or if M1 can simulate M2.

Composite Tape TMs

Track 0

Track 1

A composite tape consists of many tracks which can be read or written simultaneously.

A composite tape TM (CTM) contains more than one tracks in its tape.

0 1 1 0 1 0 1 0 0 …

0 0 1 1 1 1 1 1 0 …

ATC 17CS54

Dept of CSE,SJBIT Page 106

Equivalence of CTMs and TMs

A CTM is simply a TM with a complex alphabet..

T = {a, b, c, d}

T‟ = {00, 01, 10, 11}

Turing Machines with Stay Option

Turing Machines with stay option has a third option for movement of the TM

head:

left, right or stay.

STM = <S, T, , s0, H>

: S x T à S x T x {L, R, S}

Equivalence of STMs and TMs

STM = TM:

Just don‟t use the S option…

TM = STM:

For L and R moves of a given STM build a TM that moves correspondingly L or

R…

TM = STM:

For S moves of the STM, do the following:

1.Move right,

2.Move back left without changing the tape

3.STM: (s,a) |-- (s‟,b,S)

TM: (s,a) |-- (s‟‟, b, R)

(s‟‟,*) |-- (s‟,*,L)

2-way Infinite Turing Machine

In a 2-way infinite TM (2TM), the tape is infinite on both sides.

There is no # that delimits the left end of the tape.

Equivalence of 2TMs and TMs

2TM = TM:

Just don‟t use the left part of the tape…

TM = 2TM:

Simulate a 2-way infinite tape on a one-way infinite tape…

ATC 17CS54

Dept of CSE,SJBIT Page 107

0 –1 1 –2 2 –3 3 –4 4 –5 5 …

Multi-tape Turing Machines

A multi-tape TM (MTM) utilizes many tapes.

Equivalence of MTMs and TMs

MTM = TM:

Use just the first tape…

TM = MTM:

Reduction of multiple tapes to a single tape.

Consider an MTM having m tapes. A single tape TM that is equivalent can be constructed

by reducing m tapes to a single tape.

A

B

C

TM

… -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 …

A0 B0 C0 A1 B1 C1 A2 B2 C2 A3 B3 ..

0 1 2 3 4 5 6 7 …

0 1 2 3 4 5 6 7 …

0 1 2 3 4 5 6 7 …

ATC 17CS54

Dept of CSE,SJBIT Page 108

Non-deterministic TM

A non-deterministic TM (NTM) is defined as:

NTM = <S, T, s0, , H>

where : S x T à2SxTx{L,R}

Ex: (s2,a) à {(s3,b,L) (s4,a,R)}

Equivalence of NTMs and TMs

A “concurrent” view of an NTM:

(s2,a) à {(s3,b,L) (s4,a,R)}

è at (s2,a), two TMs are spawned:

(s2,a) à (s3,b,L)

(s2,a) à (s4,a,R)

UNIT-7

Recommended question:

 Define Turing machine

 Explain multi-tape Turing machine

 Explain un decidability

 What is halting problems

ATC 17CS54

Unit-8:Undesirability

8.1: A language that is not recursively enumerable

8.2: a un decidable problem that is RE

8.3: Posts correspondence problem

8.4: other undecidable problem

Dept of CSE,SJBIT Page 109

ATC 17CS54

Dept of CSE,SJBIT Page 110

8.1 : A language that is not recursively enumerable

Decidable

A problem P is decidable if it can be solved by a Turing machine T that always

halt. (We say that P has an effective algorithm.)

Note that the corresponding language of a decidable problem is recursive.

Undecidable

A problem is undecidable if it cannot be solved by any Turing machine that halts

on all inputs.

Note that the corresponding language of an undecidable problem is non-recursive.

Complements of Recursive Languages

Theorem: If L is a recursive language, L is also recursive.

Proof: Let M be a TM for L that always halt. We can construct another TM M

from M for L that always halts as follows:

Input
Accept

Rejec

Complements of RE Languages

Theorem: If both a language L and its complement L are RE, L is recursive.

Proof: Let M1 and M2 be TM for L and L respectively. We can construct a TM

M from M1 and M2 for L that always halt as follows:

Input

Accept

Reject

A Non-recursive RE Language

Accept

Rejec

M

M

M
M

1 Accept

M2 Accept

ATC 17CS54

Dept of CSE,SJBIT Page 111

• We are going to give an example of a RE language that is not recursive, i.e., a

language L that can be accepted by a TM, but there is no TM for L that always

halt.

• Again, we need to make use of the binary encoding of a TM.

Ld

Recursive

Recursively

Enumerable (RE)

We will now

look at an

example in

this region.

Non-recursively

Enumerable (Non-RE)

A Non-recursive RE Language

• Recall that we can encode each TM uniquely as a binary number and enumerate

all TM‟s as T1, T2, …, Tk, … where the encoded value of the kth TM, i.e., Tk, is

k.

• Consider the language Lu:

Lu = {(k, w) | Tk accepts input w}

This is called the universal language.

Universal Language

• Note that designing a TM to recognize Lu is the same as solving the problem of

given k and w, decide whether Tk accepts w as its input.

• We are going to show that Lu is RE but non-recursive, i.e., Lu can be accepted by

a TM, but there is no TM for Lu that always halt.

ATC 17CS54

Dept of CSE,SJBIT Page 112

0 1 1 1 1 1 1

Universal Turing Machine

• To show that Lu is RE, we construct a TM

U, called the universal Turing machine,

such that Lu = L(U).

• U is designed in such a way that given k

and w, it will mimic the operation of Tk on

input w:

k separator w

U will move back and forth to mimic Tk on input w.

Universal Turing Machine

(k, w)
w

i.e., k1111110w

Accept

U

Accept

Why cannot we use a similar method to construct

a TM for Ld?

Tk

ATC 17CS54

Dept of CSE,SJBIT Page 113

Universal Language

• Since there is a TM that accepts Lu, Lu is

RE. We are going to show that Lu is non-

recursive.

• If Lu is recursive, there is a TM M for Lu

that always halt. Then, we can construct a

TM M‟ for Ld as follows:

Reject
k

Accept

A Non-recursive RE Language

• Since we have already shown that Ld is non-recursively enumerable, so M‟ does

not exist and there is no such M.

• Therefore the universal language is recursively enumerable but non-recursive.

Halting Problem

Consider the halting problem:

Given (k,w), determine if Tk halts on w.

It‟s corresponding language is:

Lh = { (k, w) | Tk halts on input w}

The halting problem is also undecidable, i.e., Lh is non-recursive. To show this,

we can make use of the universal language problem.

We want to show that if the halting problem can be solved (decidable), the

universal language problem can also be solved.

So we will try to reduce an instance (a particular problem) in Lu to an instance

in Lh in such a way that if we know the answer for the latter, we will know the

answer for the former.

Class Discussion

Consider a particular instance (k,w) in Lu, i.e., we want to determine if Tk will

accept w. Construct an instance I=(k‟,w‟) in Lh from (k,w) so that if we know

whether Tk‟ will halt on w‟, we will know whether Tk will accept w.

Halting Problem

Therefore, if we have a method to solve the halting problem, we can also solve

the universal language problem. (Since for any particular instance I of the

universal language problem, we can construct an instance of the halting problem,

solve it and get the answer for I.) However, since the universal problem is

undecidable, we can conclude that the halting problem is also undecidable.

Modified Post Correspondence Problem

k1111110k Accept

Reject

M‟

Copy

M

ATC 17CS54

Dept of CSE,SJBIT Page 114

• We have seen an undecidable problem, that is, given a Turing machine M and an

input w, determine whether M will accept w (universal language problem).

• We will study another undecidable problem that is not related to Turing machine

directly.

Given two lists A and B:
A = w1, w2, …, wk B = x1, x2, …, xk

The problem is to determine if there is a sequence of one or more integers i1, i2,

…, im such that:

w1wi1wi2…wim = x1xi1xi2…xim

(wi, xi) is called a corresponding pair.

Example

 A B

i wi xi

1 11 1

2 1 111

3 0111 10

4 10 0

This MPCP instance has a solution: 3, 2, 2, 4:

w1w3w2w2w4 = x1x3x2x2x4 = 1101111110

8.2 : a un decidable problem that is RE

ATC 17CS54

Dept of CSE,SJBIT Page 115

Undecidability of PCP

To show that MPCP is undecidable, we will

reduce the universal language problem (ULP) to

MPCP:

Universal

Language

Problem (ULP)

MPCP

If MPCP can be solved, ULP can also be solved.

Since we have already shown that ULP is un-

decidable, MPCP must also be undecidable.

Mapping ULP to MPCP

• Mapping a universal language problem instance to an MPCP instance is not as

easy.

• In a ULP instance, we are given a Turing machine M and an input w, we want to

determine if M will accept w. To map a ULP instance to an MPCP instance

success-fully, the mapped MPCP instance should have a solution if and only if M

accepts w.

Mapping ULP to MPCP

ULP instance MPCP instance

Construct an

MPCP instance

If T accepts w, the two lists can be matched.

OtherwCSE, the two lists cannot be matched.

Mapping ULP to MPCP

Two lists:

A and B

Given:

(T,w)

A mapping

ATC 17CS54

Dept of CSE,SJBIT Page 116

q0 0/0, L q1

• We assume that the input Turing machine T:

– Never prints a blank

– Never moves left from its initial head position.

• These assumptions can be made because:

– Theorem (p.346 in Textbook): Every language accepted by a TM M2 will

also be accepted by a TM M1 with the following restrictions: (1) M1‟s

head never moves left from its initial position. (2) M1 never writes a

blank.

Mapping ULP to MPCP

Given T and w, the idea is to map the transition function of T to strings in the two

lists in such a way that a matching of the two lists will correspond to a

concatenation of the tape contents at each time step.

We will illustrate this with an example first.

Example of ULP to MPCP

• Consider the following Turing machine:

T = ({q0, q1},{0,1},{0,1,#}, Δ, q0, #, {q1})

1/0, R

Δ(q0,1)=(q0,0,R) Δ(q0,0)=(q1,0,L)

• Consider input w=110.

ATC 17CS54

Dept of CSE,SJBIT Page 117

Example of ULP to MPCP

• Now we will construct an MPCP instance

from T and w. There are five types of

strings in list A and B:

• Starting string (first pair):

List A List B

#q0110#

Example of ULP to MPCP

• Strings from the transition function Δ:

List A List B

q01 0q0 (from Δ(q0,1)=(q0,0,R))

0q00 q100 (from Δ(q0,0)=(q1,0,L))

1q00 q110 (from Δ(q0,0)=(q1,0,L))

Example of ULP to MPCP

• Strings for copying:

List A List B

0 0

1 1

Example of ULP to MPCP

• Strings for consuming the tape symbols at the end:

ATC 17CS54

Dept of CSE,SJBIT Page 118

List A List B List A List B

0q1 q1 0q11 q1

1q1 q1 1q10 q1

q10 q1 0q10 q1

q11 q1 1q10 q1

Example of ULP to MPCP

• Ending string:

List A List B

q1## #

Now, we have constructed an MPCP instance

Example of ULP to MPCP

List A List B List A List B

1. # #q0110# 9. 0q1 q1

2. q01 0q0 10. 1q1 q1

3. 0q00 q100 11. q10 q1

4. 1q00 q110 12. q11 q1

5. # # 13. 0q11 q1

6. 0 0 14. 1q10 q1

7. 1 1 15. 0q10 q1

8. q1## # 16. 1q10 q1

Example of ULP to MPCP

Example of ULP to MPCP

• This ULP instance has a solution:

q0110 → 0q010 → 00q00 → 0q100 (halt)

• Does this MPCP instance has a solution?

List A:
q0 1 1 0 # 0 q0 1 0 # 0 0 q0 0 # 0 q1 0 0 # q1 0 # q1 # #

List B:
q0 1 1 0 # 0 q0 1 0 # 0 0 q0 0 # 0 q1 0 0 # q1 0 # q1 # #

The solution is the sequence of indices:

2, 7, 6, 5, 6, 2, 6, 5, 6, 3, 5, 15, 6, 5, 11, 5, 8

Class Discussion

Consider the input w = 101. Construct the corresponding MPCP instance I and

show that T will accept w by giving a solution to I.

ATC 17CS54

Dept of CSE,SJBIT Page 119

Class Discussion (cont‟d)

List A List B List A List B

1. # #q0101# 9. 0q1 q1

2. q01 0q0 10. 1q1 q1

3. 0q00 q100 11. q10 q1

4. 1q00 q110 12. q11 q1

5. # # 13. 0q11 q1

6. 0 0 14. 1q10 q1

7. 1 1 15. 0q10 q1

8. q1## # 16. 1q10 q1

Mapping ULP to MPCP

• We summarize the mapping as follows. Given T and w, there are five types of

strings in list A and B:

• Starting string (first pair):

List A List B

#q0w#

where q0 is the starting state of T.

Mapping ULP to MPCP

• Strings from the transition function Δ:

List A List B

qX Yp from Δ(q,X)=(p,Y,R)

ZqX pZY from Δ(q,X)=(p,Y,L)

q# Yp# from Δ(q,#)=(p,Y,R)

Zq# pZY# from Δ(q,#)=(p,Y,L)

where Z is any tape symbol except the blank.

Mapping ULP to MPCP

• Strings for copying:

List A List B

X X

where X is any tape symbol (including the blank).

Mapping ULP to MPCP

• Strings for consuming the tape symbols at the end:

List A List B

Xq q

qY q

XqY q

ATC 17CS54

Dept of CSE,SJBIT Page 120

where q is an accepting state, and each X and Y is any tape symbol except the

blank.

Mapping ULP to MPCP

• Ending string:

List A List B

q## #

where q is an accepting state.

• Using this mapping, we can prove that the original ULP instance has a solution if

and only if the mapped MPCP instance has a solution. (Textbook, p.402, Theorem

9.19)

8.3 Post's Correspondence Problem

(PCP)

Input: Two sequences, A = w1; : : : ;wk and

B = x1; : : : ; xk, where each wi and xi is a string

over some alphabet §.

Question: Is there a sequence i1; : : : ; im such

that 1 · ij · k for 1 · j · m and

wi1 ¢ ¢ ¢wim = xi1 ¢ ¢ ¢ xim?

Example:

A = 1; 10111; 10

B = 111; 10; 0

ATC 17CS54

Dept of CSE,SJBIT Page 121

ATC 17CS54

Dept of CSE,SJBIT Page 122

8.4 : other undecidable problem

A problem P is decidable if it can be solved by a Turing machine T that always halt. (We

say that P has an effective algorithm.)

Note that the corresponding language of a decidable problem is recursive.

Undecidable

A problem is undecidable if it cannot be solved by any Turing machine that halts

on all inputs.

Note that the corresponding language of an undecidable problem is non-recursive.

Complements of Recursive Languages

Theorem: If L is a recursive language, L is also recursive.

Proof: Let M be a TM for L that always halt. We can construct another TM M

from M for L that always halts as follows:

ATC 17CS54

Dept of CSE,SJBIT page 123

Input
Accept

Rejec

Complements of RE Languages

Theorem: If both a language L and its complement L are RE, L is recursive.

Proof: Let M1 and M2 be TM for L and L respectively. We can construct a TM

M from M1 and M2 for L that always halt as follows:

Input

Accept

Reject

Accept

Rejec

M

M

M
M

1 Accept

M2 Accept

ATC 17CS54

Dept of CSE, SJBIT page 124

Recommended questions:

Unit 8:

1. Explain briefly the following Halting problem

2. What is Post‟s Correspondence problem

3. P.t If L is a recursive language, L is also recursive.

4. define undecidability, decidability

