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Automata Theory and computability 
 

Subject Code: 17CS54/18CS54 I.A. Marks :  40 

Hours/Week : 04 Exam Hours: 03 

Total Hours : 40 Exam Marks: 60 

PART – A 

 
Module – 1 8 Hours 

Introduction to Finite Automata: Introduction to Finite Automata; The central concepts of 

Automata theory; Deterministic finite automata; finite automata 

Finite Automata, Regular Expressions: An application of finite automata; Finite automata 

with Epsilon-transitions; Regular expressions; Finite Automata and Regular Expressions; 

Applications of Regular Expressions 

 
    Module – 2      8 Hours   

Regular Languages, Properties of Regular Languages: Regular languages; Proving 

languages not to be regular languages; Closure properties of regular languages; Decision 

properties of regular languages; Equivalence and minimization of automata 

Context-Free Grammars And Languages : Context –free grammars; Parse trees; 

Applications; Ambiguity in grammars and Languages . 

 8 Hours 

 

    Module – 3  

Pushdown Automata: Definition of the Pushdown automata; the languages of a PDA; 

Equivalence of PDA‟s and CFG‟s; Deterministic Pushdown 

Properties of Context-Free Languages: Normal forms for CFGs; The pumping lemma for 

CFGs; Closure properties of CFLs 

 
Module – 4 8 Hours 

Introduction To Turing Machine: Problems that Computers cannot solve;The turning 

machine; Programming techniques for Turning Machines;Extensions to the basic Turning 

Machines; Turing Machine and Computers. 

 

Module – 5 8 Hours 

Undecidability: A Language that is not recursively enumerable; An Undecidable problem 

that is RE; Post‟s Correspondence problem; Other undecidable problems. 
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1.1 :Introduction to finite automata 
 

In this chapter we are going to study a class of machines called finite automata. Finite 

automata are computing devices that accept/recognize regular languages and are used to 

model operations of many systems we find in practice. Their operations can be simulated 

by a very simple computer program. A kind of systems finite automnata can model and a 

computer program to simulate their operations are discussed. 

 

Formal definition 

Automaton 

An automaton is represented formally by a 5-tuple (Q,Σ,δ,q0,F), where: 
 

• Q is a finite set of states. 

• Σ is a finite set of symbols, called the alphabet of the automaton. 

• δ is the transition function, that is, δ: Q × Σ → Q. 

• q0 is the start state, that is, the state of the automaton before any input has 

been processed, where q0 Q. 

• F is a set of states of Q (i.e. F Q) called accept states. 

 
Input word 

An automaton reads a finite string of symbols a1,a2,...., an , where ai Σ, which is 

called an input word. The set of all words is denoted by Σ*. 

Run  
A run of the automaton on an input word w = a1,a2,...., an Σ*, is a sequence of 

states q0,q1,q2,...., qn, where qi Q such that q0 is the start state and qi = δ(qi-1,ai) 

for 0 < i ≤ n. In words, at first the automaton is at the start state q0, and then the 

automaton reads symbols of the input word in sequence. When the automaton 

reads symbol ai it jumps to state qi = δ(qi-1,ai). qn is said to be the final state of the 

run. 

Accepting word 

A word w Σ* is accepted by the automaton if qn F. 

Recognized language 

An automaton can recognize a formal language. The language L Σ* recognized 

by an automaton is the set of all the words that are accepted by the automaton. 

Recognizable languages 

The recognizable languages are the set of languages that are recognized by some 

automaton. For the above definition of automata the recognizable languages are 

regular languages. For different definitions of automata, the recognizable 

languages are different. 

 

1.2 :concepts of automata theory 
 

Automata theory is a subject matter that studies properties of various types of automata. 

For example, the following questions are studied about a given type of automata. 

 
• Which class of formal languages is recognizable by some type of automata? 

(Recognizable languages) 
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• Are certain automata closed under union, intersection, or complementation of 

formal languages? (Closure properties) 

• How much is a type of automata expressive in terms of recognizing class of 

formal languages? And, their relative expressive power? (Language Hierarchy) 

 
Automata theory also studies if there exist any effective algorithm or not to solve 

problems similar to the following list. 

 
• Does an automaton accept any input word? (emptiness checking) 

• Is it possible to transform a given non-deterministic automaton into deterministic 

automaton without changing the recognizable language? (Determinization) 

• For a given formal language, what is the smallest automaton that recognizes it? 

(Minimization). 

 

Classes of automata 
 

The following is an incomplete list of types of automata. 
 

Automata 

Deterministic finite automata(DFA) 

Nondeterministic finite automata(NFA) 

Nondeterministic finite automata with ε-transitions (FND-ε 

or ε-NFA) 

Pushdown automata (PDA) 

Linear bounded automata (LBA) 

Turing machines 

Timed  automata 

Deterministic Büchi automata 

Nondeterministic Büchi automata 

Nondeterministic/Deterministic Rabin automata 

Nondeterministic/Deterministic Streett automata 

Nondeterministic/Deterministic parity automata 

Nondeterministic/Deterministic Muller automata 

Recognizable language 

regular languages 

regular languages 

regular languages 

context-free languages 

context-sensitive language 

recursively enumerable 

languages 

 
ω-limit languages 

ω-regular languages 

ω-regular languages 

ω-regular languages 

ω-regular languages 

ω-regular languages 

 

1.3 :Deterministic finite automata 

. Definition: A DFA is 5-tuple or quintuple M = (Q, ∑, Δ, q0, A) where 

Q is non-empty, finite set of states. 

∑ is non-empty, finite set of input alphabets. 

Δ is transition function, which is a mapping from Q x ∑ to Q. 
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a,b 

q a q b q 

b 
a 

q 

a,b 

 

q0 ∈ Q is the start state. 

A ⊆ Q is set of accepting or final states. 

Note: For each input symbol a, from a given state there is exactly one transition (there 

can be no transitions from a state also) and we are sure (or can determine) to which state 

the machine enters. So, the machine is called Deterministic machine. Since it has finite 

number of states the machine is called Deterministic finite machine or Deterministic 

Finite Automaton or Finite State Machine (FSM). 

The language accepted by DFA is 

L(M) = { w | w ∈ ∑* and Δ*(q0, w) ∈ A } 

The non-acceptance of the string w by an FA or DFA can be defined in formal notation 

as:                 

L(M) = { w | w ∈ ∑* and Δ*(q0, w) ∉ A } 
 

Obtain a DFA to accept strings of a’s and b’s starting with the string ab 
 

Fig.1.1 Transition diagram to accept string ab(a+b)* 

So, the DFA which accepts strings of a‟s and b‟s starting with the string ab is given by 

M = (Q, ∑ , Δ, q0, A) where 

Q = {q0, q1, q2, q3} 

∑ = {a, b} 

q0 is the start state 

A = {q2}. 

Δ is shown the transition table 2.4. 
 

 
Δ 

←Σ→ 

a b 

→q0 q1 q3 

q1 q3 q2 

q2 q2 q2 

q3 q3 q3 
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1 

q0 
0 

0 

q1 
1 

0 
q2 

0 

1 
q3 

b a,b 

q0 
a 

q1 
a 

q2 

b b a,b 

q0 
a q1 

a q2 

b a, b 

q0 
a q1 

 

Draw a DFA to accept string of 0’s and 1’s ending with the string 011. 
 

1 

Obtain a DFA to accept strings of a’s and b’s having a sub string aa 
 

 

b 

 

Obtain a DFA to accept strings of a’s and b’s except those containing the substring aab. 

 
a,b 

 

 

b 

 
Obtain DFAs to accept strings of a’s and b’s having exactly one a, 

 
 

 

 

a, b 

b a 

q0 
a 

q1 
a 

q2 
b 

q3 

b b b b 

q0 
a q1 

a q2 
a q3 

a q4 
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q q 
a 

b b b 
a 

q q 

q0 q1 

a 

b b b 

a 

q2 q3 

q0 q1 

a 

b b b 

a 

q2 q3 

 

Obtain a DFA to accept strings of a’s and b’s having even number of a’s and b’s 

The machine to accept even number of a‟s and b‟s is shown in fig.2.22. 

a 
 

 

b 
 

 
a 

Fig.2.22 DFA to accept even no. of a’s and b’s 

 

 
a 

 

 

 

b 
 

 

a a 

 

 

 

b 
 

 

a 

 

a 
 

 

 

b 
 

 

a 
Regular language 

Definition: Let M = (Q, ∑, Δ, q0, A) be a DFA. The language L is regular if there exists a 

machine M such that L = L(M). 

q0 q1 

a 

b b b 

a 

q2 q3 
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* Applications of Finite Automata * 

String matching/processing 

Compiler Construction 

The various compilers such as C/C++, Pascal, Fortran or any other compiler is designed 

using the finite automata. The DFAs are extensively used in the building the various 

phases of compiler such as 

• Lexical analysis (To identify the tokens, identifiers, to strip of the comments etc.) 

• Syntax analysis (To check the syntax of each statement or control statement used 

in the program) 

• Code optimization (To remove the un wanted code) 

• Code generation (To generate the machine code) 

 
Other applications- The concept of finite automata is used in wide applications. It is not 

possible to list all the applications as there are infinite number of applications. This  

section lists some applications: 

1. Large natural vocabularies can be described using finite automaton which 

includes the applications such as spelling checkers and advCSErs, multi- 
language 

dictionaries, to indent the documents, in calculators to evaluate complex 

expressions based on the priority of an operator etc. to name a few. Any editor 

that we use uses finite automaton for implementation. 

2. Finite automaton is very useful in recognizing difficult problems i.e., sometimes it 

is very essential to solve an un-decidable problem. Even though there is no 

general solution exists for the specified problem, using theory of computation, we 

can find the approximate solutions. 

3. Finite automaton is very useful in hardware design such as circuit verification, in 

design of the hardware board (mother board or any other hardware unit), 

automatic traffic signals, radio controlled toys, elevators, automatic sensors, 

remote sensing or controller etc. 

In game theory and games wherein we use some control characters to fight against a 

monster, economics, computer graphics, linguistics etc., finite automaton plays a very 

important role 
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q1 
a q2 

b q3 
a q4 

Ε 

q0 

Ε 
a 

q5 
a q6 

b q7 

 

1.4 : Non deterministic finite automata(NFA) 

Definition: An NFA is a 5-tuple or quintuple M = (Q, ∑, Δ, q0, A) where 

Q is non empty, finite set of states. 

∑ is non empty, finite set of input alphabets. 

Δ is transition function which is a mapping from 

Q x {∑ U Ε} to subsets of 2Q. This function shows 

the change of state from one state to a set of states 

based on the input symbol. 

q0 ∈ Q is the start state. 

A ⊆   Q is set of final states. 

Acceptance of language 

Definition: Let M = (Q, ∑, Δ, q0, A) be a DFA where Q is set of finite states, ∑ is set of 

input alphabets (from which a string can be formed), Δ is transition function from Q x 

{∑UΕ} to 2Q, q0 is the start state and A is the final or accepting state. The string (also 

called language) w accepted by an NFA can be defined in formal notation as: 

 
L(M) = { w | w ∈ ∑*and Δ*(q0, w) = Q with atleast one 

Component of Q in A} 

 
Obtain an NFA to accept the following language L = {w | w ∈ abab

n
 or aba

n
 where n ≥ 0} 

The machine to accept either abab
n
 or aba

n
 where n ≥ 0 is shown below: 

 

 

 

 

 

 

 

 

Conversion from NFA to DFA 

Let MN = (QN, ∑N, ΔN, q0, AN) be an NFA and accepts the language L(MN). There should 

be an equivalent DFA MD = (QD, ∑D, ΔD, q0, AD) such that L(MD) = L(MN). The 

procedure to convert an NFA to its equivalent DFA is shown below: 
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0 1 

q0 
0,1 

q1 
0, 1 

q2 

 

Step1: 

 

 

 

Step2: 

 

 

 

 

 

 

 

 

 
Step3: 

 

 

 

Step4: 

 

The start state of NFA MN is the start state of DFA MD. So, add q0(which is the 

start state of NFA) to QD and find the transitions from this state. The way to 

obtain different transitions is shown in step2. 

 
 

For each state [qi, qj,….qk] in QD, the transitions for each input symbol in ∑ can 

be obtained as shown below: 

1. ΔD([qi, qj,….qk], a) = ΔN(qi, a) U ΔN(qj, a) U ……ΔN(qk, a) 

= [ql, qm,….qn] say. 

2. Add the state [ql, qm,….qn] to QD, if it is not already in QD. 

3. Add the transition from [qi, qj,….qk] to [ql, qm,….qn] on the input symbol a iff 

the state [ql, qm,….qn] is added to QD in the previous step. 

 

The state [qa, qb,….qc] ∈ QD is the final state, if at least one of the state in qa, qb, 

….. qc ∈ AN i.e., at least one of the component in [qa, qb,….qc] should be the final 

state of NFA. 

 
 

If epsilon (∈ ) is accepted by NFA, then start state q0 of DFA is made the final 

state. 
 
 

Convert the following NFA into an equivalent DFA. 
 

 

Step1: q0 is the start of DFA (see step1 in the conversion procedure). 

 

So, QD = {[q0]} (2.7) 

 
Step2: Find the new states from each state in QD and obtain the corresponding transitions. 

Consider the state [q0]: 

When a = 0 

ΔD([q0], 0) 

 

 
When a = 1 

ΔD([q0], 1) 

= ΔN([q0], 0) 
= [q0, q1] 

(2.8) 

 

= ΔN([q0], 1) 
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= [q1] 

(2.9) 

 

Since the states obtained in (2.8) and (2.9) are not in QD(2.7), add these two states to QD 

so that 

 
QD = {[q0], [q0, q1], [q1] } (2.10) 

 
The corresponding transitions on a = 0 and a = 1 are shown below. 

∑ 

 

Q 
 

 

Consider the state [q0, q1]: 

When a = 0 

ΔD([q0, q1], = 

0)  = 
= 

= 

 
When a = 1 

 

 
 

ΔN([q0, q1], 0) 

ΔN(q0, 0) U ΔN(q1, 0) 

{q0, q1} U {q2} 

[q0, q1, q2] 

(2.11) 

ΔD([q0, q1], = ΔN([q0, q1], 1) 

1)  = ΔN(q0, 1) U ΔN(q1, 1) 
  = {q1} U {q2} 
  = [q1, q2] 
   (2.12) 

 

Since the states obtained in (2.11) and (2.12)  are the not defined in QD(see 2.10), add 

these two states to QD so that 

QD = {[q0], [q0, q1], [q1], [q0, q1, q2], [q1, q2] } (2.13) 

and add the transitions on a = 0 and a = 1 as shown below: 

∑ 

 

Q 

 

Δ 0 1 

[q0] [q0, q1] [q1] 

[q0, q1]   

[q1]   

 

Δ 0 1 

[q0] [q0, q1] [q1] 

[q0, q1] [q0, q1, q2] [q1, q2] 

[q1]   

[q0, q1, 

q2] 

  

[q1, q2]   
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Consider the state [q1]: 

When a = 0 
 

ΔD([q1], 0) 

 

 
When a = 1 

 
ΔD([q1], 1) 

= ΔN([q1], 0) 

= [q2] 

(2.14) 

 

 
= ΔN([q1], 1) 

= [q2] 

(2.15) 
 

Since the states obtained in (2.14) and (2.15) are same and the state q2 is not in QD(see 

2.13), add the state q2 to QD so that 

 
QD = {[q0], [q0, q1], [q1], [q0, q1, q2], [q1, q2], [q2]} (2.16) 

 
and add the transitions on a = 0 and a = 1 as shown below: 

∑ 

 

Q 

 

 

 
Consider the state [q0,q1,q2]: 

 
When a = 0 

 

ΔD([q0,q1,q2], 

0) 

 

 

 

 

 
When a = 1 

= ΔN([q0,q1,q2], 0) 
= ΔN(q0, 0) U ΔN(q1, 0) U ΔN(q2, 0) 
= {q0,q1} U {q2} U {Φ} 
= [q0,q1,q2] 

(2.17) 

ΔD([q0,q1,q2], 

1) 

= 

= 
ΔN([q0,q1,q2], 1) 

ΔN(q0, 1) U ΔN(q1, 1) U ΔN(q2, 1) 
 = {q1} U {q2} U {q2} 
 = [q1, q2] 

Δ 0 1 

[q0] [q0, q1] [q1] 

[q0, q1] [q0, q1, q2] [q1, q2] 

[q1] [q2] [q2] 

[q0, q1, 

q2] 

  

[q1, q2]   

[q2]   
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(2.18) 

Since the states obtained in (2.17) and (2.18) are not new states (are already in QD, see 

2.16), do not add these two states to QD. But, the transitions on a = 0 and a = 1 should be 

added to the transitional table as shown below: 

∑ 
 
 

Q 

 

 

 
Consider the state [q1,q2]: 

 

When a = 0 

ΔD([q1,q2], 0) 

 
= ΔN([q1,q2], 0) 
= ΔN(q1, 0) U ΔN(q2, 0) 
= {q2} U {Φ} 

 

When a = 1 

ΔD([q1,q2], 1) 

= 

 

 
= 

[q2] 

(2.19) 

 
ΔN([q1,q2], 1) 

 = 

= 

= 

ΔN(q1, 1) U ΔN(q2, 1) 

{q2} U {q2} 

[q2] 
(2.20) 

 

Since the states obtained in (2.19) and (2.20) are not new states (are already in QD see 

2.16), do not add these two states to QD. But, the transitions on a = 0 and a = 1 should be 

added to the transitional table as shown below: 

∑ 

 

Q 

 

 

 

Consider the state [q2]: 

Δ 0 1 

[q0] [q0, q1] [q1] 

[q0, q1] [q0, q1, q2] [q1, q2] 

[q1] [q2] [q2] 

[q0, q1, 

q2] 

[q0,q1,q2] [q1, q2] 

[q1, q2]   

[q2]   

 

Δ 0 1 

[q0] [q0, q1] [q1] 

[q0, q1] [q0, q1, q2] [q1, q2] 

[q1] [q2] [q2] 

[q0, q1, 

q2] 

[q0,q1,q2] [q1, q2] 

[q1, q2] [q2] [q2] 

[q2]   
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[q 0 ] 

0 1 

[q 0 , q 1 ] [q 1 ] 

0 1 0, 1 

[q 0 , q 1 , q 2 ] 
1 

[q 1 , q 2 ] 
0, 1 

[q 2 ] 

 

When a = 0 

ΔD([q2], 0) 

 
 

When a = 1 

ΔD([q2], 1) 

 
= ΔN([q2], 0) 

= {Φ} 

(2.21) 

 
= ΔN([q2], 1) 

= [q2] 

(2.22) 
 

Since the states obtained in (2.21) and (2.22) are not new states (are already in QD, see 

2.16), do not add these two states to QD. But, the transitions on a = 0 and a = 1 should be 

added to the transitional table. The final transitional table is shown in table 2.14. and final 

DFA is shown in figure 2.35. 

 

Δ 0 1 

[q0] [q0, q1] [q1] 

[q0,q1] 
[q0, q1, q2] [q1, q2] 

[q1] 
[q2] [q2] 

[q0,q1,q2] 
[q0,q1,q2] [q1, q2] 

[q1,q2] [q2] [q2] 

[q2] Φ [q2] 
 

0 1 

 

Fig.2.35 The DFA 
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Ε 

Ε 4 
a 

5 ∈ 

0 
a 

1 
b 

2 
Ε 

3 8 
∈ 

9 

Ε 6 
b 

Ε 

7 Ε 

 

Convert the following NFA to its equivalent DFA. 

 
 

Let QD = {0} 

Consider the state [A]: 

When input is a: 

Δ(A, a) 

 

When input is b: 

Δ( A, b) 

 

Consider the state [B]: 

 
When input is a: 

Δ(B, a) 

 

 

 

 

= ΔN(0, a) 

= {1} 

(B) 

 
= ΔN(0, b) 
= {Φ} 

 

 

= ΔN(1, a) 
= {Φ} 

(A) 

 

When input is b: 

Δ( B, b) 

 
= ΔN(1, b) 
= {2} 
= {2,3,4,6,9} (C) 

 

This is because, in state 2, due to Ε-transitions (or without giving any input) 

there can be transition to states 3,4,6,9 also. So, all these states are reachable 

from state 2. Therefore, 

Δ(B, b) = {2,3,4,6,9} = C 

Consider the state [C]: 

When input is a: 

Δ(C, a) = ΔN({2,3,4,6,9}, a) 
= {5} 
= {5, 8, 9, 3, 4, 6} 

= {3, 4, 5, 6, 8, 9} (ascending 

order) (D) 
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This is because, in state 5 due to Ε-transitions, the states reachable are {8, 9, 3, 

4, 6}. Therefore, 

 
Δ(C, a) = {3, 4, 5, 6, 8, 9} = D 

When input is b: 

Δ( C, b) = ΔN({2, 3, 4, 6, 9}, b) 
= {7} 
= {7, 8, 9, 3, 4, 6} 

= {3, 4, 6, 7, 8, 9}(ascending order) 

(E) 

This is because, from state 7 the states that are reachable without any input (i.e.,  

Ε-transition) are {8, 9, 3, 4, 6}. Therefore, 

Δ(C, b) = {3, 4, 6, 7, 8, 9} = E 

Consider the state [D]: 

When input is a: 

Δ(D, a) = ΔN({3,4,5,6,8,9}, a) 
= {5} 
= {5, 8, 9, 3, 4, 6} 

= {3, 4, 5, 6, 8, 9} (ascending 

order) (D) 

When input is b: 
 

Δ(D, b) 

 

 

 

 

Consider the state [E]: 

When input is a: 

Δ(E, a) 

 

 

 

When input is b: 

Δ(E, b) 

= ΔN({3,4,5,6,8,9}, b) 
= {7} 
= {7, 8, 9, 3, 4, 6} 

= {3, 4, 6, 7, 8, 9} (ascending 

order) (E) 

 

 

= ΔN({3,4,6,7,8,9}, a) 
= {5} 
= {5, 8, 9, 3, 4, 6} 

= {3, 4, 5, 6, 8, 9}(ascending order) 

(D) 

 
 

= ΔN({3,4,6,7,8,9}, b) 
= {7} 
= {7, 8, 9, 3, 4, 6} 

= {3, 4, 6, 7, 8, 9}(ascending order) 

(E) 

Since there are no new states, we can stop at this point and the transition table for the 

DFA is shown in table 2.15. 
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a 

A 
a 

B 
b 

C 

b 

a 

a 
D 

b 
E 

b 

 

∑ 

 

Q 
 

Table 2.15 Transitional table 
 

The states C,D and E are final states, since 9 (final state of NFA) is present in C, D and E. 

The final transition diagram of DFA is shown in figure 2.36 
 

Fig. 2.36 The DFA 

Δ a b 

A B - 

B - C 

C D E 

D D E 

E D E 
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Unit 1: Recommended questions 

 
1. Obtain a DFA to accept strings of a‟s and b‟s starting with the string ab 

 

2. Draw a DFA to accept string of 0‟s and 1‟s ending with the string 011. 
 

3. Obtain a DFA to accept strings of a‟s and b‟s having a sub string aa 

4. Obtain a DFA to accept strings of a‟s and b‟s except those containing the 

substring aab. 

5. Obtain DFAs to accept strings of a‟s and b‟s having exactly one a, 
 

6. Obtain a DFA to accept strings of a‟s and b‟s having even number of a‟s and b‟s 
 

7. Give Applications of Finite Automata * 

8. Define DFA, ∈ NFA & Language? 

9. (i) Write Regular expression for the following L = { an bm : m, n are even} L = { an, bm
 

: m>=2, n>=2} 
(ii) Write DFA to accept strings of 0‟s, 1‟s & 2‟s beginning with a 0 followed by odd 

number of 1‟s and ending with a 2. 

10. Design a DFA to accept string of 0‟s & 1‟s when interpreted as binary numbers would be 
multiple of 3. 

11. Find ∈ closure of each state and give the set of all strings of length 3 or less accepted by 

automaton. 

 

δ ∈ a b 

 p 

q 

*r 

{r} 

Φ 

{p,q} 

{q} 

{p} 

{r} 

{p,r} 

Φ 

{p} 

12. Convert above automaton to a DFA 
13. Write a note on Application of automaton. 
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UNIT-2: 

FINITE AUTOMATA, REGULAR EXPRESSIONS 

2.1 An application of finite automata 

2.2 Finite automata with Epsilon transitions 

2.3 Regular expressions 

2.4 Finite automata and regular expressions 

2.5 Applications of Regular expressions 
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2.1 An application of finite automata 
 

Applications of finite automata includes String matching algorithms, network 

protocols and lexical analyzers 

 
String Processing 

Consider finding all occurrences of a short string (pattern string) within a 

Long string (text string).This can be done by processing the text through 

a DFA: the DFA for all strings that end with the pattern string. Each time the accept state 

is reached, the current position in the text is output 

 
Example: Finding 1001 

To find all occurrences of pattern 1001, construct 

the DFA for all strings ending in 1001. 
 

 
 

 

 

Finite-State Machines 

A finite-state machine is an FA together with 

actions on the arcs. 

A trivial example for a communication link: 
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Example FSM: Bot Behavior 

A bot is a computer-generated character in a  video game. 
 

 

 

 
 

State charts 

State charts model tasks as a set of states and actions. They extend FA diagrams. Here is 

a simplified state chart for a stopwatch 

 
 

Lexical Analysis 

In compiling a program, the first step is lexi-cal analysis. This isolates 

keywords,identifiersetc., while eliminating irrelevant symbols.A token is a category, for 

example “identifier”,“relation operator” or specific keyword. 

For example, 

token RE 

keyword then then 

variable name [a-zA-Z][a-zA-Z0-9]* where latter RE says it is any string of 

alphanumeric 

characters starting with a letter. 

A lexical analyzer takes source code as a string,and outputs sequence of tokens. 

For example, 

for i = 1 to max do 

x[i] = 0; 

might have token sequence 

for id = num to id do id [ id ] = num sep 

As a token is identified, there may be an action. 

For example, when a number is identified, itsvalue is calculated 

 
2.2 Finite automata with Epsilon transitions 

We can extend an NFA by introducing a "feature" that allows us to make a transition on 

, the empty string. All the transition lets us do is spontaneously make a transition, 
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without receiving an input symbol. This is another mechanism that allows our NFA to be 
in multiple states at once. Whenever we take an edge, we must fork off a new "thread" 
for the NFA starting in the destination state. 

Just as nondeterminism made NFA's more convenient to represent some problems than 

DFA's but were not more powerful, the same applies to ΕNFA's. While more 

expressive, anything we can represent with an ΕNFA we can represent with a DFA that 

has no Ε transitions. 

 
Epsilon Closure 

 
Epsilon Closure of a state is simply the set of all states we can reach by following the 

transition function from the given state that are labeled . Generally speaking, a collection of 

objects is closed under some operation if applying that operation to members of the 

collection 

returns an object still in the collection. 

In the above example: 

Ε∗ (q) = { q } 

Ε∗ (r) = { r, s} 

let us define the extended transition function for an ΕNFA. For a 

regular, NFA we said for the induction step: 

Let 

Δ^(q,w) = {p1, p2, ... pk} 

Δ(pi,a) = Sifor i=1,2,...k 

Then ^(q, wa) = S1,S2... Sk 

For an -NFA, we change for ^(q, wa): 

Union[ Δ∗ (Each state in S1, S2, ... Sk)] 

This includes the original set S1,S2... Sk as well as any states we can reach via . 

When coupled with the basis that ^(q, ) = Δ∗ (q) lets us inductively define an 

extended transition function for a ΕNFA. 

 

Eliminating ΕTransitions 

ΕTransitions are a convenience in some cases, but do not increase the power of the NFA. 

To eliminate them we can convert a ΕNFA into an equivalent DFA, which is quite 

similar to the steps we took for converting a normal NFA to a DFA, except we must now 

follow all ΕTransitions and add those to our set of states. 

1. Compute Ε∗ for the current state, resulting in a set of states S. 

2. Δ(S,a) is computed for all a in ∑ by 
a. Let S = {p1, p2, ... pk} 

b. Compute I=1k (pi,a) and call this set {r1, r2, r3... rm}. This set is achieved by 

following input a, 

not by following any Ε transitions 

c. Add the Ε transitions in by computing (S,a)= I=1 m  Ε∗  (r1) 

3. Make a state an accepting state if it includes any final states in the -NFA. 

 

Note :The ε (epsilon) transition refers to a transition from one state to another 

without the reading of an input 
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symbol (ie without the tape containing the input string moving). Epsilon 

transitions can be inserted between 

any states. There is also a conversion algorithm from a 

NFA with epsilon transitions to a NFA without 

epsilon transitions. 
 

 

Consider the NFA-epsilon move machine M = { Q, ∑, 

Δ, q0, F} 

Q = { q0, q1, q2 } 

∑= { a, b, c } and Ε moves 

q0 = q0 

F = { q2 } 
 

 

 

 

Note: add an arc from qz to qz labeled "c" to figure above. 

 
The language accepted by the above NFA with epsilon moves is 

the set of strings over {a,b,c} including the null string and 

all strings with any number of a's followed by any number of b's 

followed by any number of c's. 

Now convert the NFA with epsilon moves to a NFA M = ( Q', ∑, Δ', q0', F') 

First determine the states of the new machine, Q' = the epsilon closure 

of the states in the NFA with epsilon moves. There will be the same number 

of states but the names can be constructed by writing the state name as 

the set of states in the epsilon closure. The epsilon closure is the 

initial state and all states that can be reached by one or more epsilon moves. 

Thus q0 in the NFA-epsilon becomes {q0,q1,q2} because the machine can move 

from q0 to q1 by an epsilon move, then check q1 and find that it can move 

from q1 to q2 by an epsilon move. 

 
q1 in the NFA-epsilon becomes {q1,q2} because the machine can move from 

Δ a b C Ε 

q0 {q0} Φ Φ {q1} 

q1 Φ {q2} Φ {q2} 

q2 Φ Φ {q2} Φ 
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q1 to q2 by an epsilon move. 

 
q2 in the NFA-epsilon becomes {q2} just to keep the notation the same. q2 

can go nowhere except q2, that is what phi means, on an epsilon move. 

We do not show the epsilon transition of a state to itself here, but, 

beware, we will take into account the state to itself epsilon transition 

when converting NFA's to regular expressions. 

The initial state of our new machine is {q0,q1,q2} the epsilon closure of q0 

The final state(s) of our new machine is the new state(s) that contain 

a state symbol that was a final state in the original machine. 

The new machine accepts the same language as the old machine, thus same sigma. 

So far we have for out new NFA 

Q' = { {q0,q1,q2}, {q1,q2}, {q2} } or renamed { qx, qy, qz } 

∑= { a, b, c } 

F' = { {q0,q1,q2}, {q1,q2}, {q2} } or renamed { qx, qy, qz } 

q0 = {q0,q1,q2} or renamed qx 

 

inputs 

 
Δ′ a b c 

qx or{q0,q1,q2}    

qy or{q1,q2}    

qz or{q2}    

Now we fill in the transitions. Remember that a NFA has transition entries that are sets. 

Further, the names in the transition entry sets must be only the state names from Q'. 

Very carefully consider each old machine transitions in the first row. 

You can ignore any Φ entries and ignore the Ε column. 

In the old machine Δ(q0,a)=q0 thus in the new machine 

Δ'({q0,q1,q2},a)={q0,q1,q2} this is just because the new machine 

accepts the same language as the old machine and must at least have the 

the same transitions for the new state names. 

 

inputs 
 

Δ′ a b c 

qx or{q0,q1,q2} {qx} or{{q0,q1,q2}}   

qy or{q1,q2}    

qz or{q2}    

 
No more entries go under input a in the first row because 

old Δ(q1,a)=Φ, Δ(q2,a)=Φ 
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Now consider the input b in the first row, Δ(q0,b)=Φ, Δ(q1,b)={q2} 

and Δ(q2,b)=Φ. The reason we considered q0, q1 and q2 in the old 

machine was because out new state has symbols q0, q1 and q2 in the new 

state name from the epsilon closure. Since q1 is in {q0,q1,q2} and 

Δ(q1,b)=q1 then Δ'({q0,q1,q2},b)={q1,q2}. WHY {q1,q2} ?, because 

{q1,q2} is the new machines name for the old machines name q1. Just 

compare the zeroth column of Δ to Δ'. So we have 

 
 

inputs 

 
Δ′ a b c 

qx or{q0,q1,q2} {qx} or{{q0,q1,q2}} {qy} or{{q1,q2}}  

qy or{q1,q2}    

qz or{q2}    

Now, because our new qx state has a symbol q2 in its name and 

Δ(q2,c)=q2 is in the old machine, the new name for the old q2, 

which is qz or {q2} is put into the input c transition in row 1. 

Inputs 

 
Δ′ a b c 

qx or{q0,q1,q2} {qx} or{{q0,q1,q2}} {qy} or{{q1,q2}} {qz} or{{q2}} 

qy or{q1,q2}    

qz or{q2}    

Now, tediously, move on to row two, ... . 

You are considering all transitions in the old machine, delta, 

for all old machine state symbols in the name of the new machines states. 

Fine the old machine state that results from an input and translate 

the old machine state to the corresponding new machine state name and 

put the new machine state name in the set in delta'. Below are the 

"long new state names" and the renamed state names in delta'. 

 
Inputs 

 
Δ′ a b c 

qx or{q0,q1,q2} {qx} or{{q0,q1,q2}} {qy} or{{q1,q2}} {qz} or{{q2}} 

qy or{q1,q2} Φ {qy} or{{q1,q2}} {qz} or{{q2}} 

qz or{q2} Φ Φ {qz} or{{q2}} 

 

inputs 

\ 

\ Q′ 

/ 

/ 

Δ′ a b c 

qx {qx} {qy} {qz} 

qy Φ {qy} {qz} 

qz Φ Φ {qz} 
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The figure above labeled NFA shows this state transition table. 

 
It seems rather trivial to add the column for epsilon transitions, 

but we will make good use of this in converting regular expressions 

to machines. regular-expression -> NFA-epsilon -> NFA -> DFA. 

 
2.3 :Regular expression 

Definition: A regular expression is recursively defined as follows. 

 
1. Φ is a regular expression denoting an empty language. 

2. Ε-(epsilon) is a regular expression indicates the language containing an empty 

string. 

3. a is a regular expression which indicates the language containing only {a} 

4. If R is a regular expression denoting the language LR and S is a regular 

expression denoting the language LS, then 

a. R+S is a regular expression corresponding to the language LRULS. 

b. R.S is a regular expression corresponding to the language LR.LS.. 

c. R* is a regular expression corresponding to the language LR
*. 

5. The expressions obtained by applying any of the rules from 1-4 are regular 

expressions. 

 

 

 

 

The table 3.1 shows some examples of regular expressions and the language corresponding to 

these regular expressions. 
 

Regular 

expressions 

Meaning 

(a+b)* Set of strings of a‟s and b‟s of any length 

including the NULL string. 

(a+b)*abb Set of strings of a‟s and b‟s ending with the 

string abb 

ab(a+b)* Set of strings of a‟s  and b‟s  starting with the 

string ab. 

(a+b)*aa(a+b) 

* 
Set of strings of a‟s and b‟s having a sub string 

aa. 

a*b*c* Set of string consisting of any number of 

a‟s(may be empty string also) followed by any 

number of b‟s(may include empty string) 

followed by any number of c‟s(may include 

empty string). 

a+b+c+ 
Set of string consisting of at least one „a‟ 

followed by string consisting of at least one „b‟ 
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 followed by string consisting of at least one „c‟. 

aa*bb*cc* Set of string consisting of at least one „a‟ 

followed by string consisting of at least one „b‟ 

followed by string consisting of at least one „c‟. 

(a+b)* (a + 

bb) 

Set of strings of a‟s and b‟s ending with either a 

or bb 

(aa)*(bb)*b Set of strings consisting of even number of a‟s 

followed by odd number of b‟s 

(0+1)*000 Set of strings of 0‟s and 1‟s ending with three 

consecutive zeros(or ending with 000) 

(11)* Set consisting of even number of 1‟s 
 

Table 3.1 Meaning of regular expressions 

 

Obtain a regular expression to accept a language consisting of strings of a‟s and b‟s of even 

length. 

 
String of a‟s and b‟s of even length can be obtained by the combination of the strings aa, 

ab, ba and bb. The language may even consist of an empty string denoted by Ε. So, the 

regular expression can be of the form 

(aa + ab + ba + bb)* 

The * closure includes the empty string. 

Note: This regular expression can also be represented using set notation as 

L(R) = {(aa + ab + ba + bb)n | n ≥ 0} 

 
Obtain a regular expression to accept a language consisting of strings of a‟s and b‟s of odd 

length. 

String of a‟s and b‟s of odd length can be obtained by the combination of the strings aa, 

ab, ba and bb followed by either a or b. So, the regular expression can be of the form 

(aa + ab + ba + bb)* (a+b) 

String of a‟s and b‟s of odd length can also be obtained by the combination of the strings 

aa, ab, ba and bb preceded by either a or b. So, the regular expression can also be 

represented as 

(a+b) (aa + ab + ba + bb)* 

Note: Even though these two expression are seems to be different, the language 

corresponding to those two expression is same. So, a variety of regular expressions can 

be obtained for a language and all are equivalent. 
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q M f 

Ε q1 M1 Ε 

q0 qf 

Ε q2 M2 Ε 

 

2.4 :finite automata and regular expressions 
 

Obtain NFA from the regular expression 

 
Theorem: Let R be a regular expression. Then there exists a finite automaton M = (Q, ∑, 

Δ, q0, A) which accepts L(R). 

 

Proof: By definition, Φ, Ε and a are regular expressions. So, the corresponding machines 

to recognize these expressions are shown in figure 3.1.a, 3.1.b and 3.1.c respectively. 

 

 
Φ 

 

(a) (b) (c) 

 
Fig 3.1 NFAs to accept Φ, Ε and a 

 
The schematic representation of a regular expression R to accept the language L(R) is 

shown in figure 3.2. where q is the start state and f is the final state of machine M. 

L(R) 

 

Fig 3.2 Schematic representation of FA accepting L(R) 

 
In the definition of a regular expression it is clear that if R and S are regular expression, 

then R+S and R.S and R* are regular expressions which clearly uses three operators „+‟, 

„-„ and „.‟. Let us take each case separately and construct equivalent machine. Let M1 = 

(Q1, ∑1, Δ1, q1, f1) be a machine which accepts the language L(R1) corresponding to the 

regular expression R1. Let M2 = (Q2, ∑2, Δ2, q2, f2) be a machine which accepts the 

language L(R2) corresponding to the regular expression R2. 

 

Case 1: R = R1 + R2. We can construct an NFA which accepts either L(R1) or L(R2) 

which can be represented as L(R1 + R2) as shown in figure 3.3. 

 

L(R1) 

L(R2) 

 

 

Fig. 3.3 To accept the language L(R1 + R2) 

q0 Ε qf q0 
a qf qf q0 
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q1 M1 
Ε 

q2
 

M2 

q0 

Ε 
q1 M1 

L(R1) 

Ε 
q

 
f 

Ε 

q0 
Ε 

q1 M1 
Ε 

qf 

 

 

It is clear from figure 3.3 that the machine can either accept L(R1) or L(R2). Here, q0 is 

the start state of the combined machine and qf is the final state of combined machine M. 

 
Case 2: R = R1 . R2. We can construct an NFA which accepts L(R1) followed by L(R2) 

which can be represented as L(R1 . R2) as shown in figure 3.4. 

L(R1) L(R2) 
 

 
 

Fig. 3.4To accept the language L(R1 . R2) 

 
It is clear from figure 3.4 that the machine after accepting L(R1) moves from state q1 to 

f1. Since there is a Ε-transition, without any input there will be a transition from state f1 to 

state q2. In state q2, upon accepting L(R2), the machine moves to f2 which is the final 

state. Thus, q1 which is the start state of machine M1 becomes the start state of the 

combined machine M and f2 which is the final state of machine M2, becomes the final 

state of machine M and accepts the language L(R1.R2). 

 

Case 3: R = (R1)
*. We can construct an NFA which accepts either L(R1)

*) as shown in 

figure 3.5.a. It can also be represented as shown in figure 3.5.b. 

 
Ε 

 

 

 

 

Ε 

(a) 
 
 

Ε 

 
(b) 

 
Fig. 3.5 To accept the language L(R1)* 

 
It is clear from figure 3.5 that the machine can either accept Ε or any number of L(R1)s 

thus accepting the language L(R1)
*. Here, q0 is the start state qf is the final state. 

Obtain an NFA which accepts strings of a‟s and b‟s starting with the string ab. 

 
The regular expression corresponding to this language is ab(a+b)*. 
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4 
a 

5 

6 
b 

7 

Ε 4 
a 

5 Ε 

3 8 

Ε 6 
b 

7 Ε 

Ε 4 

Ε 

a 
5 Ε 

2 
Ε 

3 

Ε 

8 
Ε 

9 

6 
b 

Ε 

7 Ε 

0 
a 

1 
b 

2 

Ε 

Ε 4 
a 

5 Ε 

0 
a 

1 
b 

2 
Ε 

3 

Ε 6 
b 

7 

8 

Ε 

Ε 
9 

Ε 

 

 

Step 1: The machine to accept „a‟ is shown below. 

 

 

Step 2: The machine to accept „b‟ is shown below. 
 

Step 3: The machine to accept (a + b) is shown below. 
 

Step 4: The machine to accept (a+b)* is shown below. 
 

 

Step 5: The machine to accept ab is shown below. 
 
 

 

Step 6: The machine to accept ab(a+b)* is shown below. 
 

 

 

Fig. 3.6 To accept the language L(ab(a+b)*) 
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1   2 4 3 1   2 

r1 r r 

q0 q1 

 

Obtain the regular expression from FA 

Theorem: Let M = (Q, ∑, Δ, q0, A) be an FA recognizing the language L. Then there 

exists an equivalent regular expression R for the regular language L such that L = L(R). 

 
The general procedure to obtain a regular expression from FA is shown below. Consider 

the generalized graph 
 

r 

Fig. 3.9 Generalized transition graph 

 
where r1, r2, r3 and r4 are the regular expressions and correspond to the labels for the 

edges. The regular expression for this can take the form: 

 
r = r *r (r + r r *r )* (3.1) 

 
Note: 

1. Any graph can be reduced to the graph shown in figure 3.9. Then substitute the 

regular expressions appropriately in the equation 3.1 and obtain the final regular 

expression. 

2. If r3 is not there in figure 3.9, the regular expression can be of the form 

r = r1
*r2 r4

* (3.2) 
 

3. If q0 and q1 are the final states then the regular expression can be of the form 

r = r1* + r1
*r2 r4

* (3.3) 
 

 

 

 

 

 

 

 

 

 

 
 

Obtain a regular expression for the FA shown below: 

0 
 

 

 

 

 

 
0,1 

1 

q0 q1 

1 
0 1 0 

q2 q3 
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0 1 

q0 
1 

q1 

 

 

 

 

The figure can be reduced as shown below: 

 
 

It is clear from this figure that the machine accepts strings of 01‟s and 10‟s of any length  

and the regular expression can be of the form 

 
(01 + 10)* 

 

What is the language accepted by the following FA 
 

0, 
 

 

 

Since, state q2 is the dead state, it can be removed and the following FA is obtained. 
 

 

The state q0 is the final state and at this point it can accept any number of 0‟s which can 

be represented using notation as 
 

0* 

 
q1 is also the final state. So, to reach q1 one can input any number of 0‟s followed by 1 

and followed by any number of 1‟s and can be represented as 

0*11* 

 
So, the final regular expression is obtained by adding 0* and 0*11*. So, the regular 

expression is 

 

R.E = 0* + 0*11* 

= 0* ( ∈ + 11*) 

= 0* ( ∈ + 1+) 

= 0* (1*) = 0*1* 

 
It is clear from the regular expression that language consists of any number of 0‟s 

(possibly Ε) followed by any number of 1‟s(possibly Ε). 

01 

q0 

10 

0 1 

q0 
0 

1 
q1 q2 
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2.5 :Applications of Regular Expressions 

Pattern Matching refers to a set of objects with some common properties. We can match 

an identifier or a decimal number or we can search for a string in the text. 
 

An application of regular expression in UNIX editor ed. 

In UNIX operating system, we can use the editor ed to search for a specific pattern in the 

text. For example, if the command specified is 

 
/acb*c/ 

 
then the editor searches for a string which starts with ac followed by zero or more b‟s and 

followed by the symbol c. Note that the editor ed accepts the regular expression and 

searches for that particular pattern in the text. As the input can vary dynamically, it is 

challenging to write programs for string patters of these kinds. 



ATC 17CS54 

Dept of CSE,SJBIT Page 37 

 

 

0 1 

q0 
0,1 

q1 
0, 1 

q2 

Ε 

Ε 4 
a 

5 ∈ 

a b Ε 
0 1 2 3 8 

∈ 
9 

Ε 6 Ε 

b 

Ε 

7 

 

Unit- 2: Recommended Questions: 

1. Obtain an NFA to accept the following language L = {w | w ∈ abab
n
 or aba

n
 where n ≥ 0} 

2. Convert the following NFA into an equivalent DFA. 
 

 

 
3. Convert the following NFA to its equivalent DFA. 

 

4. P.T. Let R be a regular expression. Then there exists a finite automaton M = (Q, 

∑, Δ, q0, A) which accepts L(R). 

 
5. Obtain an NFA which accepts strings of a‟s and b‟s starting with the string ab. 

 

6. Define grammar? Explain Chomsky Hierarchy? Give an example 
7.  (a) Obtain grammar to generate string consisting of any number of a‟s and b‟s with at 

least one b. 

• Obtain a grammar to generate the following language: L ={WW
R
 where 

W∈ {a, b}*} 

8.  (a) Obtain a grammar to generate the following language: L = { 0
m
 1

m
2

n
 | m>= 1 and 

n>=0} 

• Obtain a grammar to generate the set of all strings with no more than three a‟s 

when Σ = {a, b} 

9. Obtain a grammar to generate the following language: 

(i) L = { w | n a(w) > n b(w) } 

(ii) L = { a
n
 b

m
 c

k
 | n+2m = k for n>=0, m>=0} 

10. Define derivation , types of derivation , Derivation tree & ambiguous grammar. Give 
example for each. 

11. Is the following grammar ambiguous? 

S  aB | bA 

A  aS | bAA |a 

B  bS | aBB | b 

12. Define PDA. Obtain PDA to accept the language L = {a
n
 b

n
 | n>=1} by a final state. 

13. write a short note on application of context free grammar. 
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UNIT 3: PROPERTIES OF REGULAR LANGUAGES 

 
3.1 Regular languages 

3.2 proving languages not to be regular languages 

3.3 closure properties of regular languages 

3.4 decision properties of regular languages 

3.5 equivalence and minimization of automata 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ATC 17CS54 

Dept of CSE,SJBIT Page 39 

 

 

 

3.1 :Regular languages 
 

In theoretical computer science and formal language theory, a regular language is a 

formal language that can be expressed using a regular expression. Note that the "regular 

expression" features provided with many programming languages are augmented with 

features that make them capable of recognizing languages that can not be expressed by 

the formal regular expressions (as formally defined below). 

 
In the Chomsky hierarchy, regular languages are defined to be the languages that are 

generated by Type-3 grammars (regular grammars). Regular languages are very useful in 

input parsing and programming language design. 

 

Formal definition 
 

The collection of regular languages over an alphabet Σ is defined recursively as follows: 

 
• The empty language Ø is a regular language. 

• For each a Σ (a belongs to Σ), the singleton language {a} is a regular language. 

• If A and B are regular languages, then A B (union), A • B (concatenation), and 

A* (Kleene star) are regular languages. 

• No other languages over Σ are regular. 

 
See regular expression for its syntax and semantics. Note that the above cases are in 

effect the defining rules of regular expression 

 
Examples 

 
All finite languages are regular; in particular the empty string language {ε} = Ø* is 

regular. Other typical examples include the language consisting of all strings over the 

alphabet {a, b} which contain an even number of as, or the language consisting of all 

strings of the form: several as followed by several bs. 

 

A simple example of a language that is not regular is the set of strings               . 

Intuitively, it cannot be recognized with a finite automaton, since a finite automaton has  

finite memory and it cannot remember the exact number of a's. Techniques to prove this  

fact rigorously are given below. 

 

proving languages not to be regular languages 
 
 

• Pumping Lemma 

Used to prove certain languages like L = {0n1n | n ≥ 1} are not regular. 

• Closure properties of regular languages 

Used to build recognizers for languages that are constructed from other languages 

by certain operations. 

Ex. Automata for intersection of two regular languages 



ATC 17CS54 

Dept of CSE,SJBIT Page 40 

 

 

1 2 3 4 5 

1 
0 

1 
0 

6 
0,1 

0,1 

 

• Decision properties of regular languages 

– Used to find whether two automata define the same language 

– Used to minimize the states of DFA 

eg. Design of switching circuits. 

Pumping Lemma for regular languages ( Explanation) 

Let L = {0n1n | n ≥ 1} 

There is no regular expression to define L. 00*11* is not the regular expression defining 

L. Let L= {0212} 

0 0 1 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

State 6 is a trap state, state 3 remembers that two 0‟s have come and from there state 5 

remembers that two 1‟s are accepted. 

This implies DFA has no memory to remember arbitrary „n‟. In other words if we have to 

remember n, which varies from 1 to ∞ have to have infinite states, which is not 

possible with a finite state machine, which has finite number of states. 

 

 

 

 

Pumping Lemma (PL) for Regular Languages 

Theorem: 

Let L be a regular language. Then there exists a constant „n‟ (which 

depends on L) such that for every string w in L such that |w| ≥ n, we can break w into 

three strings, w=xyz, such that: 

1. |y| > 0 

2. |xy| ≤ n 

3. For all k ≥ 0, the string xykz is also in L. 

PROOF: 
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Let L be regular defined by an FA having „n‟ states. Let w= a1,a2 ,a3   an and is in L. 

|w| = n ≥ n. Let the start state be P1. Let w = xyz where x= a1,a2 ,a3 ----- an-1 , y=an and z = 

Ε. 

 

 

 

 
 

 

Therefore  xykz = a1 ------- an-1 (an)
k Ε 

k=0 a1 ------- an-1 is accepted 

k=1 a1 ------- an is accepted 

k=2 a1 ------- an+1 is accepted 

k=10 a1 ------- an+9 is accepted and so on. 

 
 

Uses of Pumping Lemma: - This is to be used to show that, certain languages are not 

regular. It should never be used to show that some language is regular. If you want to 

show that language is regular, write separate expression, DFA or NFA. 

General Method of proof: - 

(i) Select w such that |w| ≥ n 

(ii) Select y such that |y| ≥ 1 

(iii) Select x such that |xy| ≤ n 

(iv) Assign remaining string to z 

(v) Select k suitably to show that, resulting string is not in L. 

Example 1. 

To prove that L={w|w Ε anbn, where n ≥ 1} is not regular 
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Proof: 

Let L be regular. Let n is the constant (PL Definition). Consider a word w in L. 

Let w = anbn, such that |w|=2n. Since 2n > n and L is regular it must satisfy PL. 

xy contain only a‟s. (Because |xy| ≤ n). 

Let |y|=l, where l > 0 (Because |y| > 0). 

 
Then, the break up of x. y and z can be as follows 

 

from the definition of PL , w=xykz, where k=0,1,2, ----- ∞, should belong to L. 

That is an-l (al)k bn ∈ L, for all k=0,1,2, ----- ∞ 

Put k=0. we get an-l bn ∉ L. 

Contradiction. Hence the Language is not regular. 

Example 2. 

To prove that L={w|w is a palindrome on {a,b}*} is not regular. i.e., L={aabaa, 

aba, abbbba,…} 

Proof: 

Let L be regular. Let n is the constant (PL Definition). Consider a word w in L. 

Let w = anban, such that |w|=2n+1. Since 2n+1 > n and L is regular it must satisfy PL. 
 

 

xy contain only a‟s. (Because |xy| ≤ n). 

Let |y|=l, where l > 0 (Because |y| > 0). 

 
That is, the break up of x. y and z can be as follows 

from the definition of PL w=xykz, where k=0,1,2, ------ ∞, should belong to L. 

That is an-l (al) k ba n ∈ L, for all k=0,1,2, ------ ∞. 
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Put k=0. we get an-l  b an∉   L, because, it is not a palindrome. Contradiction, hence the 

language is not regular 

. 

Example 3. 

To prove that L={ all strings of 1‟s whose length is prime} is not regular. i.e., 

L={12, 13 ,15 ,17 ,111 , ---- } 

Proof: Let L be regular. Let w = 1p where p is prime and | p| = n +2 

Let y = m. 

by PL xykz ∈ L 

| xykz | = | xz | + | yk | Let k = p-m 

= (p-m) + m (p-m) 

= (p-m) (1+m) ------- this can not be prime 

if p-m ≥ 2 or 1+m ≥ 2 

1. (1+m) ≥ 2 because m ≥ 1 

2. Limiting case p=n+2 

(p-m) ≥ 2 since m ≤n 

Example 4. 

To prove that L={ 0i2 | i is integer and i >0} is not regular. i.e., L={02, 04 ,09 ,016 

,025 ,----} 

Proof: Let L be regular. Let w = 0n2 where |w| = n2 ≥ n 

by PL xykz ∈ L, for all k = 0,1,--- 

Select k = 2 

| xy2z | = | xyz | + | y | 

= n2 + Min 1 and Max n 

Therefore n2 < | xy2z | ≤ n2 + n 

n2 < | xy2z | < n2 + n + 1+n adding 1 + n ( Note that less than or equal to 

is n2 < | xy2z | < (n + 1)2  replaced by less than sign) 

Say n = 5 this implies that string can have length > 25 and < 36 

which is not of the form 0i2. 

a) Show that following languages are not regular 
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3.3 :closure properties of regular languages 

1. The union of two regular languages is regular. 

2. The intersection of two regular languages is regular. 

3. The complement of a regular language is regular. 

4. The difference of two regular languages is regular. 

5. The reversal of a regular language is regular. 

6. The closure (star) of a regular language is regular. 

7. The concatenation of regular languages is regular. 

8. A homomorphism (substitution of strings for symbols) of a regular language is regular. 

9. The inverse homomorphism of a regular language is regular 

Closure under Union 
 

Theorem: If L and M are regular languages, then so is L 𝖴 M. 

Ex1. 

 

 

 

 

 
Ex2. 

L1={a,a3,a5, ---- } 

L2={a2,a4,a6, ---- } 

L1𝖴 L2 = {a,a2,a3,a4, ----} 

RE=a(a)* 

 

L1={ab, a2 b2, a3b3, a4b4, ---- } 

L2={ab,a3 b3,a5b5,----- } 

L1𝖴 L2 = {ab,a2b2, a3b3, a4b4, a5b5 --- } 

RE=ab(ab)* 
 

 

Closure Under Complementation 

Theorem : If L is a regular language over alphabet S, then L = Σ* - L is also a regular 

language. 

Ex1. 

 

 
 

Ex2. 

L1={a,a3,a5, ---- } 

Σ* -L1={e,a2,a4,a6, ----- } 

RE=(aa)* 
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Consider a DFA, A that accepts all and only the strings of 0‟s and 1‟s that end 

in 01. That is L(A) = (0+1)*01. The complement of L(A) is therefore all string of 0‟s and 

1‟s that do not end in 01 
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Theorem: - If L is a regular language over alphabet Σ, then, L = Σ* - L is also a 

regular language 

Proof: - Let L =L(A) for some DFA. A=(Q, Σ, Δ, q0, F). Then L   =   L(B), where B is 

the DFA (Q, Σ, Δ, q0, Q-F). That is, B is exactly like A, but the accepting states of A have 

become non-accepting states of B, and vice versa, then w is in L(B) if and only if Δ^ ( q0, 

w) is in Q-F, which occurs if and only if w is not in L(A). 

Closure Under Intersection 

Theorem : If L and M are regular languages, then so is L ∩ M. 

Ex1. 

 

 

 

Ex2 

 

 

 
 

Ex3. 

L1={a,a2,a3,a4,a5,a6, --- } 

L2={a2,a4,a6, ---- } 

L1L2 = {a2,a4,a6, --- } 

RE=aa(aa)* 

 
L1={ab,a3b3,a5b5,a7b7 --- } 

L2={a2 b2, a4b4, a6b6,----- } 

L1∩L2 = Φ 

RE= Φ 

 

Consider a DFA that accepts all those strings that have a 0. 
 

 

Consider a DFA that accepts all those strings that have a 1. 
 

 

The product of above two automata is given below. 

 
This automaton accepts the intersection of the first two languages: Those languages that 

have both a 0 and a 1. Then pr represents only the initial condition, in which we have 
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seen neither 0 nor 1. Then state qr means that we have seen only once 0‟s, while state ps 

represents the condition that we have seen only 1‟s. The accepting state qs represents the 

condition where we have seen both 0‟s and 1‟s. 

Ex 4 (on intersection) 

Write a DFA to accept the intersection of L1=(a+b)*a and L2=(a+b)*b that is for L1 ∩  

L2. 

 
DFA for L1 ∩ L2 = Φ (as no string has reached to final state (2,4)) 

Ex5 (on intersection) 

Find the DFA to accept the intersection of L1=(a+b)*ab (a+b)* and L2=(a+b)*ba 

(a+b)* that is for L1 ∩ L2 
 



ATC 17CS54 

Dept of CSE,SJBIT Page 48 

 

 

 

DFA for L1 ∩ L2 

 

 
Closure Under Difference 

Theorem : If L and M are regular languages, then so is L – M. 

Ex. 

 

 

 

 

Reversal 

L1={a,a3,a5,a7, ---- } 

L2={a2,a4,a6, ---- } 

L1-L2 = {a,a3,a5,a7--- } 

RE=a(a)* 

Theorem : If L is a regular language, so is LR 

Ex. 

L={001,10,111,01} 

LR={100,01,111,10} 

To prove that regular languages are closed under reversal. 

Let L = {001, 10, 111}, be a language over Σ={0,1}. 

LR is a language consisting of the reversals of the strings of L. 

That is LR = {100,01,111}. 

If L is regular we can show that LR is also regular. 

Proof. 

As L is regular it can be defined by an FA, M = (Q, Σ , Δ, q0, F), having only one final 

state. If there are more than one final states, we can use ∈ - transitions from the final 

states going to a common final state. 
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Let FA, MR = (QR, ΣR , Δ R,q0
R,FR) defines the language LR, 

Where QR = Q, ΣR = Σ, q0
R=F,FR=q0, and ΔR (p,a)-> q, iff Δ (q,a) -> p 

Since MR is derivable from M, LR is also regular. 

The proof implies the following method 

 
1. Reverse all the transitions. 

2. Swap initial and final states. 

3. Create a new start state p0 with transition on ∈ to all the 

accepting states of original DFA 

Example 

Let r=(a+b)* ab define a language L. That is 

L = {ab, aab, bab,aaab, ----- }. The FA is as given below 

 
The FA for LR can be derived from FA for L by swapping initial and final states and 

changing the direction of each edge. It is shown in the following figure. 
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Homomorphism 
 
 

A string homomorphism is a function on strings that works by substituting a particular 

string for each symbol. 

Theorem : If L is a regular language over alphabet Σ, and h is a homomorphism on Σ, 

then h (L) is also regular. 

Ex. 

The function h defined by h(0)=ab h(1)=c is a homomorphism. 

h applied to the string 00110 is ababccab 

L1= (a+b)* a (a+b)* 

 

 

h : {a, b} {0, 1}* 

 

Resulting : 

h1(L) = (01 + 11)* 01 (01 + 11)* 

h2(L) = (101 + 010)* 101 (101 + 010)* 

h3(L) = (01 + 101)* 01 (01 + 101)* 
 

Inverse Homomorphism 

Theorem : If h is a homomorphism from alphabet S to alphabet T, and L is a regular 

language over T, then h-1 (L) is also a regular language. 

Ex.Let L be the language of regular expression (00+1)*. 

Let h be the homomorphism defined by h(a)=01 and h(b)=10. Then h-1(L) is the language 

of regular expression (ba)*. 
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3.4 : decision properties of regular languages 

1. is the language described empty? 

2. Is a particular string w in the described language? 

3. Do two descriptions of a language actually describe the same language? 

This question is often called “equivalence” of languages. 

Converting Among Representations 

Converting NFA’s to DFA’s 

Time taken for either an NFA or -NFA to DFA can be exponential in the number of states 

of the NFA. Computing Ε-Closure of n states takes O(n3) time. Computation of DFA 

takes O(n3) time where number of states of DFA can be 2n. The running time of NFA to 

DFA conversion including Ε transition is O(n3 2n). Therefore the bound on the running 

time is O(n3s) where s is the number of states the DFA actually has. 

DFA to NFA Conversion 

Conversion takes O(n) time for an n state DFA. 

Automaton to Regular Expression Conversion 

For DFA where n is the number of states, conversion takes O(n34n) by substitution 

method and by state elimination method conversion takes O(n3) time. If we convert an 

NFA to DFA and then convert the DFA to a regular expression it takes the time 
3 

O(n34n 2n) 

Regular Expression to Automaton Conversion 

Regular expression to Ε-NFA takes linear time – O(n) on a regular expression of length n. 

Conversion from Ε-NFA to NFA takes O(n3) time. 

Testing Emptiness of Regular Languages 

Suppose R is regular expression, then 

1. R = R1 + R2. Then L(R) is empty if and only if both L(R1) and L(R2) are 

empty.  
2. R= R1R2. Then L(R) is empty if and only if either L(R1) or L(R2) is empty. 

3. R=R1* Then L(R) is not empty. It always includes at least Ε 

4. R=(R1) Then L(R) is empty if and only if L(R1) is empty since they are the 

same language. 

 

Testing Emptiness of Regular Languages 

Suppose R is regular expression, then 

1. R = R1 + R2. Then L(R) is empty if and only if both L(R1) and L(R2) are 

empty. 

2. R= R1R2. Then L(R) is empty if and only if either L(R1) or L(R2) is empty. 
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3. R=(R1)* Then L(R) is not empty. It always includes at least Ε 

4. R=(R1) Then L(R) is empty if and only if L(R1) is empty since they are the 

same language. 

Testing Membership in a Regular Language 

Given a string w and a Regular Language L, is w in L. 

If L is represented by a DFA, simulate the DFA processing the string of input 

symbol w, beginning in start state. If DFA ends in accepting state the answer is „Yes‟ , 

else it is „no‟. This test takes O(n) time 

If the representation is NFA, if w is of length n, NFA has s states, running time of 

this algorithm is O(ns2) 

If the representation is Ε - NFA, Ε - closure has to be computed, then processing of 

each input symbol , a , has 2 stages, each of which requires O(s2) time. 

If the representation of L is a Regular Expression of size s, we can convert to an Ε 

-NFA with almost 2s states, in O(s) time. Simulation of the above takes O(ns2) time on an 

input w of length n 

 

 

 
3.5 :Minimization of Automata ( Method 1) 

Let p and q are two states in DFA. Our goal is to understand when p and q (p ≠ q) 

can be replaced by a single state. 

Two states p and q are said to be distinguishable, if there is at least one string, w, 

such that one of Δ^ (p,w) and Δ^ (q,w) is accepting and the other is not accepting. 

Algorithm 1: 

List all unordered pair of states (p,q) for which p ≠ q. Make a sequence of passes 

through these pairs. On first pass, mark each pair of which exactly one element is in F.  

On each subsequent pass, mark any pair (r,s) if there is an a∈ ∑ for which Δ (r,a) = p, Δ 

(s,a) = q, and (p,q) is already marked. After a pass in which no new pairs are marked, 

stop. The marked pair (p,q) are distinguishable. 

Examples: 

1. Let L = {∈ , a2, a4, a6, ….} be a regular language over ∑ = {a,b}. The FA is 

shown in Fig 1. 
 

 

 

Fig 2. gives the list of all unordered pairs of states (p,q) with p ≠ q. 



ATC 17CS54 

Dept of CSE,SJBIT Page 53 

 

 

 
 

 

The boxes (1,2) and (2,3) are marked in the first pass according to the algorithm 1. 

In pass 2 no boxes are marked because, Δ(1,a) Φ and Δ (3,a) 2. That is (1,3) 
(Φ,2), 

where Φ and 3 are non final states. 

(1,b) Φ and (3,b)  Φ. That is (1,3) (Φ,Φ), where Φ is a non-final state. This 

implies that (1,3) are equivalent and can replaced by a single state A. 
 

Fig 3. Minimal Automata corresponding to FA in Fig 1 

 
 

Minimization of Automata (Method 2) 

 

Consider set {1,3}. (1,3) (2,2) and (1,3) (Φ,Φ). This implies state 1 and 3 are 

equivalent and can not be divided further. This gives us two states 2,A. The resultant FA 

is shown is Fig 3. 

 
Example 2. (Method1): 

Let r= (0+1)*10, then L(r) = {10,010,00010,110, ---}. The FA is given below 

 
Following fig shows all unordered pairs (p,q) with p ≠ q 
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The pairs marked 1 are those of which exactly one element is in F; They are marked on 

pass 1. The pairs marked 2 are those marked on the second pass. For example (5,2) is one 

of these, since (5,2)  (6,4), and the pair (6,4) was marked on pass 1. 

From this we can make out that 1, 2, and 4 can be replaced by a single state 124 

and states 3, 5, and 7 can be replaced by the single state 357. The resultant minimal FA is 

shown in Fig. 6 

 

 
The transitions of fig 4 are mapped to fig 6 as shown below 

 

 
 

Example 2. (Method1): 
 

 

 

 

 

 

 
 

(2,3) (4,6) this implies that 2 and 3 belongs to different group hence they are split in 

level 2. similarly it can be easily shown for the pairs (4,5) (1,7) and (2,5) and so on. 
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Unit 3: Recommended questions 
 

 

1. Let M = (Q, ∑, Δ, q0, A) be an FA recognizing the language L. Then there exists 

an equivalent regular expression R for the regular language L such that L = L(R). 
 

2. Obtain a regular expression for the FA shown below: 

0 
 

 

 

 

 

 
0,1 

1 
 
 

3. What is the language accepted by the following FA 
 

 

4. Write short note on Applications of Regular Expressions 

 

5. Obtain a DFA to accept strings of a‟s and b‟s starting with the string ab 
 

 

 
6. Prove pumping lemma? 

 
7. prove that L={w|w is a palindrome on {a,b}*} is not regular. i.e., L={aabaa, aba, 

abbbba,…} 

 

8. prove that L={ all strings of 1‟s whose length is prime} is not regular. i.e., L={12, 

13 ,15 ,17 ,111 , --- } 
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9. Show that following languages are not regular 

• L={anbm | n, m ≥0 and n<m } 

• L={anbm | n, m ≥0 and n>m } 

• L={anbmcmdn | n, m ≥1 } 

• L={an | n is a perfect square } 

• L={an | n is a perfect cube } 

10. Apply pumping lemma to following languages and understand why we cannot 

complete proof 

• L={anaba | n ≥0 } 

• L={anbm | n, m≥0 } 

 

11. P.T. If L and M are regular languages, then so is L 𝖴 M. 

 
12. P.T. If L is a regular language over alphabet S, then L = Σ* - L is also a regular 

language. 

 
13. P.T. - If L is a regular language over alphabet   Σ, then,   L = Σ* - L is also a 

regular language 

14. Write a DFA to accept the intersection of L1=(a+b)*a and L2=(a+b)*b that is for 

L1 ∩ L2. 

15. Find the DFA to accept the intersection of L1=(a+b)*ab (a+b)* and L2=(a+b)*ba 

(a+b)* that is for L1 ∩ L2 

16. P.T. If L and M are regular languages, then so is L – M. 

17.   P.T. If L is a regular language, so is LR 

18. If L is a regular language over alphabet Σ, and h is a homomorphism on Σ, then h 

(L) is also regular. 

19. If h is a homomorphism from alphabet S to alphabet T, and L is a regular language 

over T, then h-1 (L) is also a regular language. 

20. Design context-free grammar for the following cases 

a) L={ 0n1n | n≥l } 

b) L={aibjck| i≠j or j≠k} 

21. Generate grammar for RE 0*1(0+1)* 
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UNIT 4:Context Free Grammar and languages 
4.1 Context free grammars 
4.2 parse trees 

4.3 Applications 

4.4 ambiguities in grammars and languages 
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4.1 : Context free grammar 
 

Context Free grammar or CGF, G is represented by four components that is G=(V,T,P,S), 

where V is the set of variables, T the terminals, P the set of productions and S the start 

symbol. 

Example: The grammar Gpal for palindromes is represented by 

Gpal = ({P},{0,1}, A, P) 

where A represents the set of five productions 

1. P∈ 
2. P0 

3. P1 

4. P0P0 

5. P1P1 

 
Derivation using Grammar 

 

 
4.2 : parse trees 
Parse trees are trees labeled by symbols of a particular CFG. 

Leaves: labeled by a terminal or ε. 

Interior nodes: labeled by a variable. 

Children are labeled by the right side of a 

production for the parent. 

Root: must be labeled by the start 

symbol. 
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Example: Parse Tree 

 

S -> SS | (S) | () 

 

 
 

 
Example 1: Leftmost Derivation 

The inference that a * (a+b00) is in the language of variable E can be reflected in a 

derivation of that string, starting with the string E. Here is one such derivation: 

 

E E * E  I * E  a * E 

a * (E)  a * (E + E)  a * (I + E)  a * (a + E) 

a * (a + I)  a * (a + I0)  a * (a + I00)  a * (a + b00) 

 
Leftmost Derivation - Tree 

 
Example 2: Rightmost Derivations 

The derivation of Example 1 was actually a leftmost derivation. Thus, we can describe 

the same derivation by: 

E E * E  E *(E)  E * (E + E) 

E * (E + I)  E * (E +I0)  E * (E + I00)  E * (E + b00) 

E * (I + b00)  E * (a +b00)  I * (a + b00)  a * (a + b00) 
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We can also summarize the leftmost derivation by saying 

E  a * (a + b00), or express several steps of the derivation by expressions such as 

E * E  a * (E). 

 
Rightmost Derivation - Tree 

 

 
 

There is a rightmost derivation that uses the same replacements for each variable, 

although it makes the replacements in different order. This rightmost derivation is: 

 
E  E * E  E * (E)  E * (E + E) 

E * (E + I)  E * (E + I0)  E * (E + I00)  E * (E + b00) 

E * (I + b00)  E * (a + b00)  I * (a + b00)  a * (a + b00) 

This derivation allows us to conclude E  a * (a + b00) 

 
Consider the Grammar for string(a+b)*c 

EE + T | T 

T T * F | F 

F ( E ) | a | b | c 

 
Leftmost Derivation 

ETT*FF*F(E)*F(E+T)*F(T+T)*F(F+T)*F (a+T)*F (a+F)*F 

(a+b)*F(a+b)*c 

 
Rightmost derivation 

ETT*FT*cF*c(E)*c(E+T)*c(E+F)*c 

(E+b)*c(T+b)*c(F+b)*c(a+b)*c 

 
Example 2: 

Consider the Grammar for string (a,a) 

S->(L)|a 

L->L,S|S 

 
Leftmost derivation 
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S(L)(L,S)(S,S)(a,S)(a,a) 

 
Rightmost Derivation 

S(L)(L,S)(L,a)(S,a)(a,a) 

 
The Language of a Grammar 

If G(V,T,P,S) is a CFG, the language of G, denoted by L(G), is the set of terminal 

strings that have derivations from the start symbol. 

L(G) = {w in T | S  w} 

 

Sentential Forms 

Derivations from the start symbol produce strings that have a special role called 

“sentential forms”. That is if G = (V, T, P, S) is a CFG, then any string in   (V 𝖴   T)* such 

that S Α is a sentential form. If S Α, then is a left – sentential form, and if S Α 

, 

then is a right – sentential form. Note that the language L(G) is those sentential 

forms that are in T*; that is they consist solely of terminals. 

 
For example, E * (I + E) is a sentential form, since there is a derivation 

E  E * E  E * (E)  E * (E + E)  E * (I + E) 

However this derivation is neither leftmost nor rightmost, since at the last step, the 

middle E is replaced. 

As an example of a left – sentential form, consider a * E, with the leftmost derivation. 

E  E * E  I * E  a * E 

Additionally, the derivation 

E  E * E  E * (E)  E * (E + E) 

Shows that 

E * (E + E) is a right – sentential form. 

 
4.3 : Applications of Context – Free Grammars 

 

• Parsers 

• The YACC Parser Generator 

• Markup Languages 

• XML and Document typr definitions 

 

The YACC Parser Generator 
 

E E+E | E*E | (E)|id 

%{ #include <stdio.h> 

%} 

%token ID id 

%% 

Exp :   id   { $$ = $1 ; printf ("result is %d\n", $1);} 

| Exp „+‟ Exp {$$ = $1 + $3;} 

| Exp „*‟ Exp {$$ = $1 * $3; } 
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| „(„ Exp „)‟ {$$ = $2; } 

; 

%% 
 

int main (void) { 

return yyparse ( ); 

} 

void yyerror (char *s) { 

fprintf (stderr, "%s\n", s); 

} 

%{ 

#include "y.tab.h" 

%} 

%% 

[0-9]+ {yylval.ID = atoi(yytext); return id;} 

[ \t \n]  ; 

[+ * ( )] {return yytext[0];} 

. {ECHO; yyerror ("unexpected character");} 

%% 

 

Example 2: 
%{ 

#include <stdio.h> 

%} 

%start line 

%token <a_number> number 

%type <a_number> exp term factor 

%% 

line : exp ';' {printf ("result is %d\n", $1);} 

; 

exp : term {$$ = $1;} 

| exp '+' term {$$ = $1 + $3;} 

| exp '-' term {$$ = $1 - $3;} 

term : factor {$$ = $1;} 

| term '*' factor {$$ = $1 * $3;} 

| term '/' factor {$$ = $1 / $3;} 

; 

factor : number {$$ = $1;} 

| '(' exp ')' {$$ = $2;} 

; 

%% 

int main (void) { 

return yyparse ( ); 

} 

void yyerror (char *s) { 

fprintf (stderr, "%s\n", s); 

} 



ATC 17CS54 

Dept of CSE,SJBIT Page 63 

 

 

 

%{ 

#include "y.tab.h" 

%} 

%% 

[0-9]+ {yylval.a_number = atoi(yytext); return number;} 

[ \t\n] ; 

[-+*/();] {return yytext[0];} 

. {ECHO; yyerror ("unexpected character");} 

%% 

 

Markup Languages 

Functions 

• Creating links between documents 

• Describing the format of the document 

 

Example 

The Things I hate 

1. Moldy bread 

2. People who drive too slow 

In the fast lane 

 
HTML Source 

 
<P> The things I <EM>hate</EM>: 

<OL> 

<LI> Moldy bread 

<LI>People who drive too slow 

In the fast lane 

</OL> 

 
HTML Grammar 

• Char a | A | … 

• Text e | Char Text 

• Doc e | Element Doc 

• Element Text | 
 <EM> Doc </EM>| 
 <p> Doc | 
 <OL> List </OL>| … 

5. List-Item 
6. List 

<LI> Doc 
e | List-Item List 

 
Start symbol 



ATC 17CS54 

Dept of CSE,SJBIT Page 64 

 

 

 

XML and Document type definitions. 
 

1. AE1,E2. 

 

 
 

2.   AE1 | E2. 

 
 

3.   A(E1)* 

 

 
 

4.   A(E1)+ 

 

 
 

5. A(E1)? 

 

 
 

4.4 :Ambiguity 

 
ABC 

BE1 

CE2 

 
AE1 

AE2 

 

ABA 

AΕ 

BE1 

 
ABA 

AB 

BE1 

 
AΕ 

AE1 

A context – free grammar G is said to be ambiguous if there exists some w ∈ L(G) which 

has at least two distinct derivation trees. Alternatively, ambiguity implies the existence of 

two or more left most or rightmost derivations. 

 

Ex:- 

Consider the grammar G=(V,T,E,P) with V={E,I}, T={a,b,c,+,*,(,)}, and productions. 

EI, 

EE+E, 

EE*E, 

E(E), 

Ia|b|c 

Consider two derivation trees for a + b * c. 
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Now unambiguous grammar for the above 

Example: 

ET, TF, FI, EE+T, TT*F, 

F(E), Ia|b|c 

 
Inherent Ambiguity 

 

A CFL L is said to be inherently ambiguous if all its grammars are ambiguous 

Example: 

Condider the Grammar for string aabbccdd 

SAB | C 

A aAb | ab 

BcBd | cd 

C aCd | aDd 

D->bDc | bc 

 
Parse tree for string aabbccdd 
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 Unit 4: Recommended Questions 
 

1) Design context-free grammar for the following cases 

a) L={ 0n1n | n≥l } 

b) L={aibjck| i≠j or j≠k} 

 
2) The following grammar generates the language of RE 

0*1(0+1)* 

S  A|B 

A  0A|Ε 

B  0B|1B|Ε 

Give leftmost and rightmost derivations of the following strings 

a) 00101 b) 1001 c) 00011 

 
3) Consider the grammar 

S  aS|aSbS|Ε 

Show that deviation for the string aab is ambiguous 

 
4) Suppose h is the homomorphism from the alphabet {0,1,2} to the alphabet { a,b} 

defined by h(0) = a; h(1) = ab & 

h(2) = ba 

a) What is h(0120) ? 

b) What is h(21120) ? 

c) If L is the language L(01*2), what is h(L) ? 

d) If L is the language L(0+12), what is h(L) ? 

e) If L is the language L(a(ba)*) , what is h-1(L) ? 

 
5) Design context-free grammar for the following cases 

a) L={ 0n1n | n≥l } 

b) L={aibjck| i≠j or j≠k} 

 

6) The following grammar generates the language of RE 

0*1(0+1)* 

S  A|B 

A  0A|Ε 

B  0B|1B|Ε 

Give leftmost and rightmost derivations of the following strings 

a) 00101 b) 1001 c) 00011 

 
7) Consider the grammar 

S  aS|aSbS|Ε 
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Show that deviation for the string aab is ambiguous 

 

8) Suppose h is the homomorphism from the alphabet {0,1,2} to the alphabet { a,b} 

defined by h(0) = a; h(1) = ab & 

h(2) = ba 

a) What is h(0120) ? 

b) What is h(21120) ? 

c) If L is the language L(01*2), what is h(L) ? 

d) If L is the language L(0+12), what is h(L) ? 

e) If L is the language L(a(ba)*) , what is h-1(L) ? 
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UNIT-5: PUSH DOWN AUTOMATA 

 
5.1: Definition of the pushdown automata 

5.2: The languages of a PDA 

5.3: Equivalence of PDA and CFG 
5.4: Deterministic pushdown automata 
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5.1 :Definition of pushdown Automata: 
 

As Fig. 5.1 indicates, a pushdown automaton consists of three components: 1) an input 

tape, 2) a control unit and 3) a stack structure. The input tape consists of a linear 

configuration of cells each of which contains a character from an alphabet. This tape can 

be moved one cell at a time to the left. The stack is also a sequential structure that has a 

first element and grows in either direction from the other end. Contrary to the tape head 

associated with the input tape, the head positioned over the current stack element can 

read and write special stack characters from that position. The current stack element is 

always the top element of the stack, hence the name ``stack''. The control unit contains 

both tape heads and finds itself at any moment in a particular state. 

 

Figure 5.1: Conceptual Model of a Pushdown Automaton 

 

 
A (non-deterministic) finite state pushdown automaton (abbreviated PDA or, when the 

context is clear, an automaton) is a 7-tuple = (X, Z, , R, zA, SA, ZF), where 

 

• X = {x1, 
... , xm} is a finite set of input symbols. As above, it is also called an 

alphabet. The empty symbol is not a member of this set. It does, however, carry 

its usual meaning when encountered in the input. 

• Z = {z1, 
... zn} is a finite set of states. 

• = {s1, 
... , sp} is a finite set of stack symbols. In this case . 

  

• R ((X { })×Z× )×(Z× )) is the transition relation. 

• zA is the initial state. 

• SA is the initial stack symbol. 
 

• ZF K is a distinguished set of final states 
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5.2 The language of a PDA 
 

There are two ways to define the language of a PDA ( 

). because there are two notions of acceptance: 

 
Acceptance by final state 

That is the PDA accepts the word  if there is any sequence of IDs starting from 

and leading to , where is one of the final states. Here it 

doesn't play a role what the contents of the stack are at the end. 
 
 

uld accept because 

. Hence we conclude . 

On the other hand since there is no successful sequence of IDs starting with 

we know that . 

Acceptance by empty stack 

 

That is the PDA accepts the word  if there is any sequence of IDs starting from 

and leading to , in this case the final state plays no role. 

If we specify a PDA for acceptance by empty stack we will leave out the set of 

final states and just use . 

Our example automaton also works if we leave out and use acceptance by 

empty stack. 

 
We can always turn a PDA which use one acceptance method into one which uses the 

other. Hence, both acceptance criteria specify the same class of languages. 

In our example the PDA wo 
 

and 
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CFG 
PDA by 

empty stack 
PDA by 

Final state 

 

5.3 :Equivalence of PDA and CFG 

 
The aim is to prove that the following three classes of languages are same: 

 
1. Context Free Language defined by CFG 

2. Language accepted by PDA by final state 

3. Language accepted by PDA by empty stack 

 
It is possible to convert between any 3 classes. The representation is shown in figure 1. 

 

Figure 1: Equivalence of PDA and CFG 
 

 

From CFG to PDA: 

 
Given a CFG G, we construct a PDA P that simulates the leftmost derivations of G. The 

stack symbols of the new PDA contain all the terminal and non-terminals of the CFG. 

There is only one state in the new PDA; all the rest of the information is encoded in the 

stack. Most transitions are on , one for each production. New transitions are added, 

each one corresponding to terminals of G. For every intermediate sentential form uA  in 

the leftmost derivation of w (initially w = uv for some v), M will have A  on its stack 

after reading u. At the end (case u = w) the stack will be empty. 

Let G = (V, T, Q, S) be a CFG. The PDA which accepts L(G) by empty stack is given by: 

P = ({q}, T, V  T, δ, q, S) where δ is defined by: 

 
1. For each variable A include a transition, 

δ(q, , A) = {(q, b) | A  b is a production of Q} 

 
2. For each terminal a, include a transition 

δ(q, a, a) = {(q, )} 

 
 

CFG to PDA conversion is another way of constructing PDA. First construct CFG, and 

then convert CFG to PDA. 
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Example: 

Convert the grammar with following production to PDA accepted by empty stack: 

S  0S1 | A 

A  1A0 | S |  
 

 

Solution: 

 
P = ({q}, {0, 1}, {0, 1, A, S}, δ, q, S), where δ is given by: 

 
δ(q, , S) = {(q, 0S1), (q, A)} 

δ(q, , A) = {(q, 1A0), (q, S), (q, )} 

δ(q, 0, 0)  = {(q, )} 

δ(q, 1, 1)  = {(q, )} 

 
From PDA to CFG: 

 
Let P = (Q, Σ, Γ, δ, q0, Z0) be a PDA. An equivalent CFG is G = (V, Σ, R, S), where 

V = {S, [pXq]}, where p, q  Q and X  Γ, productions of R consists of 

 

1. For all states p, G has productions S  [q0Z0 p] 

2. Let δ(q,a,X) = {(r, Y1Y2…Yk)} where  a  Σ or a = 

number and r1r2 …rk are list of states. G has productions 

 
 

[qXrk]  a[rY1r1] [r1Y2r2] … [rk-1Ykrk] 

If k = 0 then [qXr] a 

Example: 

k can be 0 or any 

 

 

Construct PDA to accept if-else of a C program and convert it to CFG. (This does not 

accept if –if –else-else statements). 

 
Let the PDA P = ({q}, {i, e}, {X,Z}, δ, q, Z), where δ is given by: 

 
δ(q, i, Z) = {(q, XZ)}, δ(q, e, X) = {(q, )} and δ(q, , Z) = {(q, )} 

 
Solution: 

Equivalent productions are: 

S  [qZq] 

[qZq] i[qXq][qZq] 

, 
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[qXq]  e 

[qZq] 
 

If [qZq] is renamed to A and [qXq] is renamed to B, then the CFG can be defined by: 

G = ({S, A, B}, {i, e}, {S A, A iBA | , B  e}, S) 

 
Example: 

Convert PDA to CFG. PDA is given by P = ({p,q}, {0,1}, {X,Z}, δ, q, Z)), Transition 

function δ is defined by: 

 
δ(q, 1, Z) = {(q, XZ)} 

δ(q, 1, X) = {(q, XX)} 

δ(q, , X) = {(q, )} 

δ(q, 0, X) = {(p, X)} 

δ(p, 1, X) = {(p, )} 

δ(p, 0, Z) = {(q, Z)} 

 
Solution: 

 
Add productions for start variable 

S  [qZq] | [qZp] 

 
For δ(q, 1, Z)= {(q, XZ)} 

[qZq]  1[qXq][qZq] 

[qZq]  1[qXp][pZq] 

[qZp]  1[qXq][qZp] 

[qZp]  1[qXp][pZp] 

 
For δ(q, 1, X)= {(q, XX)} 

[qXq]  1[qXq][qXq] 

[qXq]  1[qXp][pXq] 

[qXp]  1[qXq][qXp] 

[qXp]  1[qXp][pXp] 

 
For δ(q, , X) = {(q, )} 

[qXq] 
 

For δ(q, 0, X) = {(p, X)} 

[qXq]  0[pXq] 

[qXp]  0[pXp] 

 
For δ(p, 1, X) = {(p, )} 

[pXp] 1 
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For δ(p, 0, Z) = {(q, Z)} 

[pZq]  0[qZq] 

[pZp]  0[qZp] 

 
Renaming the variables [qZq] to A, [qZp] to B, [pZq] to C, [pZp] to D, [qXq] to E [qXp] 

to F, [pXp] to G and [pXq] to H, the equivalent CFG can be defined by: 

 
G = ({S, A, B, C, D, E, F, G, H}, {0,1}, R, S). The productions of R also are to be 

renamed accordingly. 

 
 

5.4 :Deterministic PDA 
 

NPDA provides non-determinism to PDA. Deterministic PDA‟s (DPDA) are very useful 

for use in programming languages. For example Parsers used in YACC are DPDA‟s. 

 
Definition: 

 
A PDA P= (Q, Σ, Γ, δ, q0, Z0, F) is deterministic if and only if, 

1.δ(q,a,X) has at most one member for q Q, a  Σ or a=  and X Γ 

2.If δ(q,a,X) is not empty for some a Σ, then δ(q, ,X) must be empty 

 
DPDA is less powerful than nPDA. The Context Free Languages could be recognized by 

nPDA. The class of language DPDA accept is in between than of Regular language and 

CFL. NPDA can be constructed for accepting language of palindromes, but not by 

DPDA. 
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Example: 

Construct DPDA which accepts the language L = {wcwR | w  {a, b}*, c  Σ}. 

 

The transition diagram for the DPDA is given in figure 2. 

 

 
0, Z0/0Z0 

1, Z0/1Z0 

0,0/00 

1,1/11 

0,1/ 01 
1,0/ 10 

q0 

 
 

 

c,0/0 

c,1/1 

c, Z0/ Z0 

0,0/ Ε 

1,1/ Ε 

 

 

 

 

q1 

 

 

 
 

q2 
Ε, Z0 / 

Figure 2: DPDA L = {wcwR} 

 

 
DPDA and Regular Languages: 

 
The class of languages DPDA accepts is in between regular languages and CFLs. The 

DPDA languages include all regular languages. The two modes of acceptance are not 

same for DPDA. 

 
To accept with final state: 

 
If L is a regular language, L=L(P) for some DPDA P. PDA surely includes a stack, but 

the DPDA used to simulate a regular language does not use the stack. The stack is 

inactive always. If A is the FA for accepting the language L, then δP(q,a,Z)={(p,Z)} for 

all p, q  Q such that δA(q,a)=p. 

 

 
To accept with empty stack: 

 
Every regular language is not N(P) for some DPDA P. A language L = N(P) for some 

DPDA P if and only if L has prefix property. Definition of prefix property of L states that 

if x, y   L, then x should not be a prefix of y, or vice versa. Non-Regular language 

L=WcWR could be accepted by DPDA with empty stack, because if you take any x, y 

L(WcWR), x and y satisfy the prefix property. But the language, L={0*} could be 

accepted by DPDA with final state, but not with empty stack, because strings of this 

language do not satisfy the prefix property. So N(P) are properly included in CFL L, ie. 

N(P)  L 
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DPDA and Ambiguous grammar: 

 
DPDA is very important to design of programming languages because languages DPDA 

accept are unambiguous grammars. But all unambiguous grammars are not accepted by 

DPDA. For example S  0S0|1S1|  is an unambiguous grammar corresponds to the 

language of palindromes. This is language is accepted by only nPDA. If L = N(P) for 

DPDA P, then surely L has unambiguous CFG. 

 
If L = L(P) for DPDA P, then L has unambiguous CFG. To convert L(P) to N(P) to have 

prefix property by adding an end marker $ to strings of L. Then convert N(P) to CFG G‟. 

From G‟ we have to construct G to accept L by getting rid of $ .So add a new production 

$     as a variable of G. 
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UNIT 5 : Recommended questions 
 

a. Convert to PDA, CFG with productions: 

 
1. A  aAA, A  aS | bS | a 

2. S  SS | (S) |  

3. S  aAS | bAB | aB, A  bBB | aS | a, B  bA | a 

 
b. Convert to CFG, PDA with transition function: 

 

δ(q, 0, Z) = {(q, XZ)} 

δ(q, 0, X) = {(q, XX)} 

 
δ(q, , X) = {(p, )} 

δ(p, 1, X) = {(p, XX)} 

 

 
δ(q, 1, X) = {(q, X)} 

 
 

δ(p, , X) = {(p, )} 

δ(p, 1, Z) = {(p, )} 
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Unit-6:PROPERTIES OF CONTEXT FREE LANGUAGES 
 

 

 

6.1 Normal forms for CFGS 

6.2The pumping lemma for CFGS 

6.3closure properties of CFLS 
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The goal is to take an arbitrary Context Free Grammar G = (V, T, P, S) and perform 

transformations on the grammar that preserve the language generated by the grammar but 

reach a specific format for the productions. A CFG can be simplified by eliminating 

 

6.1 Normal forms for CFGS 

 
How to simplify? 

• Simplify CFG by eliminating 

– Useless symbols 

• Those variables or terminals that do not appear in any derivation of a terminal 

string starting from Start variable 

– - productions 

• A , where A is a variable 

– Unit production 

• A B, A and B are variables 

• Sequence to be followed 

1. Eliminate - productions from G and obtain G1 

2. Eliminate unit productions from G1 and obtain G2 

3. Eliminate useless symbols from G2and obtain G3 

1. Eliminate useless symbols: 
 

Definition: Symbol X is useful for a grammar G = (V, T, P, S) if there is S * X 

*   w, w * . If X is not useful, then it is useless. 

Omitting useless symbols from a grammar does not change the language generated 

 
• Example 

 

• Symbol X is useful if both 

– X is generating 

• If X *⇒ w,where w T* 

– X is reachable 

• If S *⇒ X 
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• Theorem: 

– Let G=(V,T,P,S) be a CFG and assume that L(G) 

grammar without useless symbols by 

1. Eliminating non generating symbols 

2. Eliminating symbols that are non reachable 

• Elimination in the order of 1 followed by 2 

1. Eliminating non generating symbols 
 

Generating symbols follow to one of the categories below: 

 

 
then G1=(V1,T1,P1,S) be a 

 
 

1. Every symbol of T is generating 

2. If A and  is already generating, then A is generating 

 

Non-generating symbols = V- generating symbols. 

 
• Example : S AB|a, A a 

– 1 followed by 2 gives S 

– 2 followed by 1 gives S a 

• A is still useless 

• Not completely all useless symbols eliminated 

• Eliminate non generating symbols 

– Every symbol of T is generating 

– If A y generating, then A is generating 

• Example 

1. G= ({S,A,B}, {a}, S AB|a, A a}, S) here B is non generating symbol 

After eliminating B, G1= ({S,A}, {a}, {S a, A a},S) 

2. S aS|A|C, A a, B aa, C aCb 

After eliminating C gets, S aS|A, A a, B aa 

2. Eliminate symbols that are non reachable 

– Draw dependency graph for all productions 
 

, 
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– If no edge reaching a variable X from Start 

symbol, X is non reachable 

• Example 

1.   G= ({S,A}, {a}, {S a, A a},S) 
 

After eliminating A, G1= ({S}, {a}, {S a},S) 

2. S aS|A, A a, B aa 

After eliminating B, S aS|A, A a 
 

• Example 

– S AB | CA, B BC|AB, A a, C AB|b 

1. Eliminate non generating symbols V1 = {A,C,S} P1 = {S CA, A a, C b } 

2. Eliminate symbols that are non reachable 

 

 

 

 
V2 = {A,C,S} 

P2 = {S A a, C b 

ExercCSEs 

• Eliminate useless symbols from the grammar 

1. P= {S aAa, A Sb|bCC, C abb, E aC} 

2. P= {S aBa|BC, A aC|BCC,C a, B bcc, D E, E d } 

3. P= {S aAa, A bBB, B ab, C aB } 

4. P= {S aS|AB, A bA,B AA } 

 

 

 
Eliminate - productions 

• Most theorems and methods about grammars G assume L(G) does not contain 

C xDy 
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• Example: G with - productions 

S  ABA, A aA | , B  bB |  

The procedure to find out an equivalent G with out -productions 

 
1. Find nullable variables 

2. Add productions with nullable variables removed. 

3. Remove -productions and duplicates 

Step 1: Find set of nullable variables 

 
Nullable variables: Variables that can be replaced by null (  ).  If A * then A is a 

nullable variable. 

 
In the grammar with productions S  ABA, A  aA | , B  bB | , A is nullable 

because of the production A . B is nullable because of the production B 

nullable because both A and B are nullable. 

S is 

 

Step 1: Algorithm to find nullable variables 

V: set of variables 

N0 {A | A in V, production A  } 

repeat 

Ni  Ni-1U{A| A in V, A Α, Α in Ni-1} 

until Ni = Ni-1 

• Step 2: For each production of the form A       w, create all possible productions of the 

form A       w‟, where w‟ is obtained from w by removing one or more occurrences of 

nullable variables 

• Example: 

S  ABA | BA | AA | AB | A | B |  

A  aA | | a 

B  bB | | b 

• Step 3: The desired grammar consists of the original productions together with the 

productions constructed in step 2, minus any productions of the form A 

• Example: 

S ABA | BA | AA | AB | A | B 

A  aA | a 

B  bB | b 

PROBLEM: 

. 
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G = ({S,A,B,D}, {a}, { S aS|AB, A  B , D b},S) 

• Solution: 

Nullable variables = {S, A, B} 

New Set of productions: 

S aS | a 

S AB | A | B 

D b 

G1= ({S,B,D}, {a}, { S aS|a|AB|A|B, D b}, S) 

• Eliminate - productions from the grammar 

Eliminate unit production 

Definition: 
• Unit production is of form A A and B are variables 

Unit productions could complicate certain proofs and they also introduce extra steps into 

derivations that technically need not be there. The algorithm for eliminating unit 

productions from the set of production P is given below: 

• Algorithm 

1. Add all non unit productions to P1 

2. For each unit production A B, add to P1 all productions A , where B is a non- 

unit production in P. 

3. Delete all the unit productions 

 
 

Example (1): Consider the grammar with production 

S  ABA | BA | AA | AB | A | B 

A aA | a 

B bB | b 

Solution: 

– Unit productions are S A, SB 

– A and B are derivable 

– Add productions from derivable 

S ABA | BA | AA | AB | A | B | aA | a | bB | b 
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S A B D 

 

A  aA | a 

B  bB | b 

– Remove unit productions 

S  ABA | BA | AA | AB | aA | a | bB | b 

A  aA | a 

B  bB | b 

Example (2): S Aa | B, A a | bc | B, B  A | bb 

Solution – Unit productions are 

S  B, A  B, B  A, A and B are derivable 

– Add productions from derivable and eliminate unit productions 

S  bb | a | bc 

A  a| bc | bb 

B  bb | a | bc 

Example (3) : Eliminate useless symbols, -productions and unit productions from 

S  a | aA|B|C, A  aB| , B  aA, C  cCD, D  ddd 

Soulution– Eliminate -productions 

Nullable = {A} 

P1 = {S  a|aA|B|C, A  aB, B  aA|a, C  cCD, D  ddd} 

-- Eliminate unit productions 

Unit productions: S  B, S C Derivable variables:B & C 

P2 = {S  a|aA| cCD, A  aB, B  aA|a, C  cCD, D ddd} 

– Eliminate useless symbols 

• After eliminate non generating symbols 

P3 = {S  a|aA, A aB, B  aA|a, D →ddd} 

• After eliminate symbols that are non reachable 

P4 = {S  a|aA, A -->aB, B -->aA|a} 

• So the equivalent grammar G1 = ({S,A,B}, {a}, {S -->a|aA, A -->aB, B -->aA|a}, S) 

 
Simplified Grammar: 



ATC 17CS54 

Dept of CSE,SJBIT Page 85 

 

 

 

If you have to get a grammar without    - productions, useless symbols and unit 

productions, follow the sequence given below: 
 

1. Eliminate - productions from G and obtain G1 

2. Eliminate unit productions from G1 and obtain G2 

3. Eliminate useless symbols from G2and obtain G3 
 

Chomsky Normal Form (CNF) 

• Every nonempty CFL without , has a grammar with productions of the form 

1. A --> BC, where A, B, C 

2. A --> a, where A and a 

• Algorithm: 

1. Eliminate useless symbols, -productions and unit productions from the grammar 

2. Elimination of terminals on RHS of a production 

a) Add all productions of the form A --> BC or A --> a to P1 

b) Consider a production A -->X1X2…Xn with some terminals of RHS. If Xi is a terminal 

say ai, then add a new variable Cai to V1 and a new production Cai -->ai to P1. Replace Xi 

in A production of P by Cai 

c) Consider A -->X1X2…Xn, where n 3 and all Xi„s are 

variables. Introduce new productions A -->X1C1, 

C1-->X2C2, … , Cn-2 -->Xn-1Xn to P1 and C1, C2, … ,Cn-2 to V1 

Example (4): Convert to CNF: 

S -->aAD, A --> aB | bAB, B -->b, D -->d 

Solution – Step1: Simplify the grammar 

• already simplified 

– Step2a: Elimination of terminals on RHS 

S -->aAD to S --> CaAD, Ca-->a 

A -->aB to A --> CaB 

A -->bAB to A --> CbAB, Cb-->b 

– Step2b: Reduce RHS with 2 variables 

S --> CaAD to S --> CaC1, C1 -->AD 

A --> CbAB to A --> CbC2, C2-->AB 

• Grammar converted to CNF: 

T 
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G1=({S,A,B,D,Ca,Cb,C1,C2}, {a,b}, 

{S --> CaC1,A --> CaB| CbC2, Ca-->a, Cb-->b, C1 -->AD, C2-->AB}, S) 

Example (5):   Convert to CNF:P={S -->ASB | , A --> aAS | a, B -->SbS | A | bb} 

Solution: – Step1: Simplify the grammar 

• Eliminate -productions (S --> ) 

P1={S -->ASB|AB, A -->aAS|aA|a, B-->SbS|Sb|bS|b|A|bb} 

• Eliminate unit productions (B-->A) 

P2={S -->ASB|AB, A -->aAS|aA|a, B-->SbS|Sb|bS|b|bb|aAS|aA|a} 

• Eliminate useless symbols: no useless symbols 

– Step2: Convert to CNF 

P3={S -->AC1|AB, A --> CaC2|CaA|a, B -->SC3 | SCb | CbS | b | CbCb| CaC2|CaA|a, 

Ca-->a, Cb -->b, C1 -->SB, C2 -->AS, C3 --> CbS } 

 
ExercCSEs: 

• Convert to CNF: 

1. S -->aSa|bSb|a|b|aa|bb 

2. S -->bA|aB, A -->bAA|aS|a, B -->aBB|bS|b 

3. S-->Aba, A -->aab, B -->AC 

4. S -->0A0|1B1|BB, A -->C, B -->S|A, C -->S|  

5. S -->aAa|bBb| , A -->C|a, B -->C|b, C -->CDE| , D -->A|B|ab 

 

 

6.2 :The Pumping Lemma for CFL 
 

The pumping lemma for regular languages states that every sufficiently long string in a 

regular language contains a short sub-string that can be pumped. That is, inserting as 

many copies of the sub-string as we like always yields a string in the regular language. 

 
The pumping lemma for CFL’s states that there are always two short sub-strings close 

together that can be repeated, both the same number of times, as often as we like. 

 

For example, consider a 

CFL L={anbn | n  1}. Equivalent CNF grammar is having productions S  AC | AB, A 

 a, B  b, C  SB. The parse tree for the string a4b4 

is given in figure 1. Both leftmost derivation and rightmost derivation have same parse 

tree because the grammar is unambiguous. 
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Figure 2: Extended Parse tree for 
4 4 

 
 

Figure : Parse tree for a4b4 

 

 
Extend the tree by duplicating the terminals generated at each level on all lower levels. 

The extended parse tree for the string a4b4 

is given in figure 2. Number of symbols at each level is at most twice of previous level. 1 

symbols at level 0, 2 symbols at 1, 4 symbols at 2 …2i symbols at level i. To have 2n 

symbols at bottom level, tree must be having at least depth of n and level of at least n+1. 

 

Pumping Lemma Theorem: 
Let L be a CFL. Then there exists a constant k  0 such that if z is any string in L such 

that |z|  k, then we can write z = uvwxy such that 

1. |vwx| k (that is, the middle portion is not too long). 

2. vx (since v and x are the pieces to be “pumped”, at least one of the strings 

we pump must not be empty). 

3. For all i  0, uviwxiy is in L. 

 
Proof: 

 
The parse tree for a grammar G in CNF will be a binary tree. Let k = 2n+1, where n is the 

number of variables of G. Suppose z  L(G) and |z|  k. Any parse tree for z must be of 

depth at least n+1. The longest path in the parse tree is at least n+1, so this path must  

contain at least n+1 occurrences of the variables. By pigeonhole principle, some variables 

occur more than once along the path. Reading from bottom to top, consider the first pair  

of same variable along the path. Say X has 2 occurrences. Break z into uvwxy such that 

w is the string of terminals generated at the lower occurrence of X and vwx is the string 

generated by upper occurrence of X. 
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Example parse tree: 

 
For the above example S has repeated occurrences, and the parse tree is shown in figure 

3. w = ab is the string generated by lower occurrence of S and vwx = aabb is the string 

generated by upper occurrence of S. So here u=aa, v=a, w=ab, x=b, y=bb. 
 
 

 

Figure 3: Parse tree for a4b4 

with repeated occurrences of S 
Figure 4: sub- trees 

Let T be the subtree rooted at upper occurrence of S and t be subtree rooted at lower 

occurrence of S. These parse trees are shown in figure 4. To get uv2wx2y L, cut out t 

and replace it with copy of T. The parse tree for uv2wx2y L is given in figure 5. 

Cutting out t and replacing it with copy of T as many times to get a valid parse tree for 

uviwxiy for i  1. 
 

  

Figure 5: Parse tree  

Figure 6: Parse tree for 
 

To get uwy  L, cut T out of the original tree and replace it with t to get a parse tree of 

uv0wx0y = uwy as shown in figure 6. 

Pumping Lemma game: 

 
1. To show that a language L is not a CFL, assume L is context free. 
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2. Choose an “appropriate” string z in L 

3. Express z = uvwxy following rules of pumping lemma 

4. Show that uvkwxky is not in L, for some k 

5. The above contradicts the Pumping Lemma 

6. Our assumption that L is context free is wrong 

 
Example: 

Show that L = {aibici | i 1} is not CFL 

Solution: 

Assume L is CFL. Choose an appropriate z = anbncn = uvwxy. Since |vwx|  n then vwx 

can either consists of 

 
1. All a‟s or all b‟s or all c‟s 

2. Some a‟s and some b‟s 

3. Some b‟s and some c‟s 

Case 1: vwx consists of all a‟s 

If z = a2b2c2 and u = 

a4b2c2 L 

v = a, w = x = a and y = b2c2 then, uv2wx2y will be 

 

Case 2: vwx consists of some a‟s and some b‟s 

 
If z = a2b2c2 and u = a, v = a, w = , x = b, y = bc2, then uv2wx2y will be a3b3c2 L 

Case 3: vwx consists of some b‟s and some c‟s 

If z = a2b2c2 and u = a2b, v = b, w = c, x = , y = c, then uv2wx2y will be a2b3c2 L 

 
If you consider any of the above 3 cases, uv2wx2y will not be having an equal number of 

a‟s, b‟s and c‟s. But Pumping Lemma says uv2wx2y L. Can‟t contradict the pumping 

lemma! Our original assumption must be wrong. So L is not context-free. 

 

 
 

Example: 

 
Show that L = {ww |w {0, 1}*} is not CFL 

Solution: 

, , 
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Assume L is CFL. It is sufficient to show that L1= {0m1n0m1n | m,n  0}, where n is 

pumping lemma constant, is a CFL. Pick any z = 0n1n0n1n = uvwxy, satisfying the 

conditions   |vwx|  n and vx . 

 
This language we prove by taking the case of i = 0, in the pumping lemma satisfying the 

condition uviwxiy for i 0. 

z is having a length of 4n. So if |vwx|  n, then |uwy|  3n. According to pumping lemma, 

uwy  L. Then uwy will be some string in the form of tt, where t is repeating. If so, n |t|  

3n/2. 

 
Suppose vwx is within first n 0’s: let vx consists of k 0‟s. Then uwy begins with 0n-k1n 

 

 

|uwy| = 4n-k. If uwy is some repeating string tt, then |t| =2n-k/2. t does end in 0 but tt 

ends with 1. So second t is not a repetition of first t. 

 
Example: z = 03130313, vx = 02 then uwy = tt = 0130313, so first t = 0130 and second 

t = 0213. Both t‟s are not same. 

 
Suppose vwx consists of 1st block of 0’s and first block of 1’s: vx consists of only 0‟s 

if x= , then uwy is not in the form tt. If vx has at least one 1, then |t| is at least 3n/2 and 

first t ends with a 0, not a 1. 

 

 
 

Very similar explanations could be given for the cases of vwx consists of first block of 

1‟s and vwx consists of 1st block of 1‟s and 2nd block of 0‟s. In all cases uwy is expected 

to be in the form of tt. But first t and second t are not the same string. So uwy is not in L 

and L is not context free. 
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Example: 

 
Show that L={0i1j2i3j | i  1, j  1} is not CFL 

Solution: 

Assume L is CFL. Pick z = uvwxy = 0n1n2n3n where |vwx|  n and vx 

. vwx can consist of a substring of one of the symbols or straddles of two adjacent 

symbols. 

 
Case 1: vwx consists of a substring of one of the symbols 

 
Then uwy has n of 3 different symbols and fewer than n of 4th symbol. Then uwy is not 

in L. 

Case 2: vwx consists of 2 adjacent symbols say 1 & 2 

Then uwy is missing some 1‟s or 2‟s and uwy is not in L. 

If we consider any combinations of above cases, we get uwy, which is not CFL. This 

 
contradicts the assumption. So L is not a CFL. 

 
6.3 :Closure Properties of CFL 
Many operations on Context Free Languages (CFL) guarantee to produce CFL. A few do 

not produce CFL. Closure properties consider operations on CFL that are guaranteed to 

produce a CFL. The CFL‟s are closed under substitution, union, concatenation, closure 

(star), reversal, homomorphism and inverse homomorphism. CFL‟s are not closed under 

intersection (but the intersection of a CFL and a regular language is always a CFL), 

complementation, and set-difference. 
 

I. Substitution: 

By substitution operation, each symbol in the strings of one language is replaced by an 

entire CFL language 

. 

Example: 

 
S(0) = {anbn| n 1}, S(1)={aa,bb} is a substitution on alphabet  ={0, 1}. 

 
Theorem: 

 
If a substitution s assigns a CFL to every symbol in the alphabet of a CFL L, then s(L) is 

a CFL. 

 

Proof: 
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Let G = (V, , P, S) be grammar for the CFL L. Let Ga = (Va, Ta, Pa, Sa) be the 

grammar corresponding to each terminal a and V  Va = 

P , S) is a grammar for s(L) where 

Then G = (V , T , 

• V  = V  Va 

• T = union of Ta‟s all for a 

 

 
• 

• 

• P  consists of 

 

 
o 

o 

o All productions in any Pa for a 

o 

o 

o 

 

o The productions of P, with each terminal a is replaced by Sa everywhere a 

occurs. 
 

Example: 

 
L = {0n1n| n  1}, generated by the grammar S  0S1 | 01, s(0) = {anbm | m  n}, 

generated by the grammar S  aSb | A; A  aA | ab, s(1) = {ab, abc}, generated by the 

grammar S  abA, A  c |  

. Rename second and third S‟s to S0 and S1, respectively. Rename second A to B. 

Resulting grammars are: 

 

S 0S1 | 01 

S0 aS0b | A; A  aA | ab 

S1  abB; B  c |  
 

In the first grammar replace 0 by S0 and 1 by S1. The resulted grammar after substitution 

is: 

S  S0SS1 | S0S1 

S0  aS0b | A; A aA | ab S1 abB; B  c |  
 

II. Application of substitution: 

 
a. Closure under union of CFL’s L1 and L2: 

 
Use L={a, b}, s(a)=L1 and s(b)=L2. Then s(L)= L1 L2. 

. 
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How t 

o get grammar for L1  L2 ? 

 
Add new start symbol S and rules S  S1 | S2 

 
The grammar for L1  L2 is G = (V, T, P, S) where V = {V1  V2  S}, S  (V1  V2) 

and P = {P1  P2  {S  S1 | S2 }} 

 
Example: 

 
L1 = {anbn  | n  0},  L2 = {bnan | n  0}. Their corresponding grammars are 

G1: S1  aS1b | , G2 : S2  bS2a |  

The grammar for L1  L2 is 

 
G = ({S, S1, S2}, {a, b}, {S  S1 | S2, S1  aS1b | , S2  bS2a}, S). 

 
b. Closure under concatenation of CFL’s L1 and L2: 

 
Let L={ab}, s(a)=L1 and s(b)=L2. Then s(L)=L1L2 

How to get grammar for L1L2? 

Add new start symbol and rule S  S1S2 

 
The grammar for L1L2 is G = (V, T, P, S) where V = V1  V2  {S}, S  V1  V2 

and P = P1  P2  {S  S1S2} 

 

Example: 

L1 = {anbn | n  0}, L2 = {bnan | n  0} then L1L2 =  {anb{n+m}am | n, m  0} 

Their corresponding grammars are 

G1: S1  aS1b | , G2 : S2  bS2a |  
 

The grammar for L1L2 is 

G = ({S, S1, S2}, {a, b}, {S  S1S2, S1  aS1b | , S2  bS2a}, S). 

 
c. Closure under Kleene’s star (closure * and positive closure +) of CFL’s L1: 

Let L = {a}* (or L = {a}+) and s(a) = L1. Then s(L) = L1* (or s(L) = L1
+). 

Example: 
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L1 = {anbn | n  0} (L1)* = {a{n1}b{n1} ... a{nk}b{nk} | k  0 and ni 0 for all i} 

L2 = {a{n2} | n  1}, (L2)* = a* 

How t 

o get grammar for (L1)*: 

Add new start symbol S and rules S  SS1 | . 

The grammar for (L1)* is 

G = (V, T, P, S), where V = V1 {S}, S  V1, 

P= P1 {S  SS1 | } 

 

d. Closure under homomorphism of CFL Li for every ai : 

 
Suppose L is a CFL over alphabet  and h is a homomorphism on . Let s be a 

substitution that replaces every a , by h(a). ie s(a) = {h(a)}. Then h(L) = s(L). ie h(L) 

={h(a1)…h(ak) | k  0}  where h(ai) is a homomorphism for every ai . 

 
III. Closure under 

 
IV. Reversal: 

 
L is a CFL, so LR is a CFL. It is enough to reverse each production of a CFL for L, i.e., 

to substitute each production A by A R. 

IV. Intersection: 

 
The CFL‟s are not closed under intersection 

 
Example: 

The language L = {0n1n2n | n  1} is not context-free. But L1 = {0n1n2i | n  1, i  1} 

is a CFL and L2 = {0i1n2n | n  1, i  1} is also a CFL. But L = L1 L2. 

Corresponding grammars for L1: S AB; A 0A1 | 01; B 2B | 2 and corresponding 

grammars for L2: S AB; A 0A | 0; B 1B2 | 12. 

 

However, L = L1 L2 , thus intersection of CFL‟s is not CFL 
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AND 

FA 

 

Intersection of 

a. CFL and Regular Language: 

 
Theorem:  If L is CFL and R is a regular language, then L R is a CFL. 

 

Accept/ 

Reject 

PDA 

  
 

 

  

 

 

 

 
 

Proof: 

Stack 

Figure 1: PDA for L ∩ R 

 

P = (QP, , , P, qP, Z0, FP) be PDA to accept L by final state. Let A = (QA, , A, qA, 

FA) for DFA to accept the Regular Language R. To get L R, we have to run a Finite 

Automata in parallel with a push down automata as shown in figure 1. Construct PDA 

P  = (Q, , , , qo, Z0, F) where 

• Q = (Qp X QA) 

• qo = (qp, qA) 

• F = (FPX FA) 

•  is in the form  ((q, p), a, X) = ((r, s), g) such that 

1. s = A(p, a) 

2. (r, g) is in P(q, a, X) 

 
That is for each move of PDA P, we make the same move in PDA P  and also we carry 

along the state of DFA A in a second component of P . P  accepts a string w if and only 

if both P and A accept w. ie w is in L    R. The moves ((qp, qA), w, Z) |-*P  ((q, p), , 

) are possible if and only if (qp, w, Z) |-*P (q, , ) moves and p = *(qA, w) 

transitions are possible. 

 

CFL and RL properties: 

 
Theorem: The following are true about CFL‟s L, L1, and L2, and a regular language R. 

 
1. Closure of CFL’s under set-difference with a regular language. 

2. 

ie 

1. L - R is a CFL. 

Proof: 
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R is regular and regular language is closed under complement. So RC is also regular. 

We know that L - R = L  RC. We have already proved the closure of intersection of 

a CFL and a regular language. So CFL is closed under set difference with a Regular 

language. 

 

2. CFL is not closed under complementation 

 
LC is not necessarily a CFL 

Proof: 

Assume that CFLs were closed under complement. ie if L is a CFL then LC is a CFL. 

Since CFLs are closed under union, L1
C L2

C is a CFL. By our assumption (L1
C 

L2
C)C is a CFL. But (L1

C     L2
C)C =   L1    L2, which we just showed isn‟t 

necessarily a CFL. Contradiction! . So our assumption is false. CFL is not closed 

under complementation. 

 

CFLs are not closed under set-difference. 

ie 

L1 - L2 is not necessarily a CFL. 

Proof: 

Let L1 =    * - L.     * is regular and is also CFL. But    * - L = LC. If CFLs were 

closed under set difference, then * - L = LC would always be a CFL. But CFL‟s 

are not closed under complementation. So CFLs are not closed under set-difference. 
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Unit 6: Recommended Question 
1. Using pumping lemma for CFL prove that below languages are not context free 

 
1. {0p | p is a prime} 

2. {anbnci | i  n} 

 
2. Eliminate the non-generating symbols from S → aS | A | C, A →a, B → aa, C->aCb 

3.Eliminate non-reachable symbols from G= ({S, A}, {a}, {S → a, A →a}, S) 

4. Draw the dependency graph as given above. A is non-reachable from S. After 

eliminating A, G1= ({S}, {a}, {S → a}, S) 

5. Eliminate non-reachable symbols from S → aS | A, A → a, B → aa 

6. Eliminate useless symbols from the grammar with productions S → AB | CA, B →BC 

| AB, A →a, C → AB | b 

7. Eliminate useless symbols from the grammar 

 
 

P= {S → aAa, A →Sb | bCC, C →abb, E → aC} 

 
P= {S → aBa | BC, A → aC | BCC, C →a, B → bcc, D → E, E →d} 

P= {S → aAa, A → bBB, B → ab, C → aB} 

P= {S → aS | AB, A → bA, B → AA} 

 

 
 

8. Define context free grammar. 

9. Explain properties of context free grammar 

10. Define Chomsky normal form 

11. Define grebech normal form 

12. State and prove pumping lemma thorem 
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UNIT -7: INTRODUCTION TO TURING MACHINES 

7.1 problems that computers cannot solve 

7.2 The turing machine 

7.3 programming techniques for turing machines 

7.4 extensions to the basic turing machines 

7.5 turing machines and computers 
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7.1 :Problems that computers cannot solve 
Definition: 

A Turing Machine (TM) is an abstract, mathematical model that describes what can and 

cannot be computed. A Turing Machine consists of a tape of infinite length, on which 

input is provided as a finite sequence of symbols. A head reads the input tape. The Turing 

Machine starts at “start state” S0. On reading an input symbol it optionally replaces it 

with another symbol, changes its internal state and moves one cell to the right or left. 

 

7.2 The Turing machine 

Definition: 

A Turing Machine (TM) is an abstract, mathematical model that describes what can and 

cannot be computed. A Turing Machine consists of a tape of infinite length, on which 

input is provided as a finite sequence of symbols. A head reads the input tape. The Turing 

Machine starts at “start state” S0. On reading an input symbol it optionally replaces it 

with another symbol, changes its internal state and moves one cell to the right or left. 

 
Notation for the Turing Machine : 

TM = <S, T, S0, , H> where, 

S is a set of TM states 

T is a set of tape symbols 

S0 is the start state 

H  S  is a set of halting states 

 : S x T S x T x {L,R} is the transition function 

{L,R}  is direction in which the head moves 

L : Left R: Right 

input symbols on infinite length tape 
 

 

1 0 1 0 1 1 1 1 1 1 0 
 

 

 

head 

 
The Turing machine model uses an infinite tape as its unlimited memory. (This is 

important because it helps to show that there are tasks that these machines cannot 

perform, even though unlimited memory and unlimited time is given.) The input symbols 

occupy some of the tape‟s cells, and other cells contain blank symbols. 

 
Some of the characteristics of a Turing machine are: 

1. The symbols can be both read from the tape and written on it. 

2. The TM head can move in either directions – Left or Right. 

3. The tape is of infinite length 

4. The special states, Halting states and Accepting states, take immediate effect. 

Turing Machine U+1: 
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Given a string of 1s on a tape (followed by an infinite number of 0s), add one more 1 at 

the end of the string. 

 

Input : #111100000000……. 

 
Output : #1111100000000………. 

 
Initially the TM is in Start state S0. Move right as long as the input symbol is 1. When a 0 

is encountered, replace it with 1 and halt. 

Transitions: 

(S0, 1) (S0, 1, R) 

(S0, 0) ( h , 1, STOP) 

 
TM Example 2 : 

 

TM: X-Y 

Given two unary numbers x and y, compute |x-y| using a TM. For purposes of simplicity 

we shall be using multiple tape symbols. 

 
Ex: 5 (11111) – 3 (111) = 2 (11) 

#11111b1110000…..  

# 11b 000… 

a) Stamp out the first 1 of x and seek the first 1 of y. 

(S0, 1) (S1, _, R) 

(S0, b) (h, b, STOP) 
(S1, 1) (S1, 1, R) 

(S1, b) (S2, b, R) 

 
b) Once the first 1 of y is reached, stamp it out. If instead the input ends, then y has 

finished. But in x, we have stamped out one extra 1, which we should replace. So, go to 

some state s5 which can handle this. 

 
(S2, 1) (S3, _, L) 

(S2,_) (S2, _, R) 

(S2, 0) (S5, 0, L) 

 
c) State s3 is when corresponding 1s from both x and y have been stamped out. Now go 

back to x to find the next 1 to stamp. While searching for the next 1 from x, if we reach 

the head of tape, then stop. 

 
(S3, _) (S3, _, L) 

(S3,b) (S4, b, L) 

(S4, 1) (S4, 1, L) 

(S4, _) (S0, _, R) 
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(S4, #) (h, #, STOP) 

 
d) State s5 is when y ended while we were looking for a 1 to stamp. This means we have 

stamped out one extra 1 in x. So, go back to x, and replace the blank character with 1 and 

stop the process. 

 
(S5, _) (S5, _, L) 

(S5,b) (S6, b, L) 

(S6, 1) (S6, 1, L) 

(S6, _) (h, 1, STOP) 

 
Solved examples: 

 
TM Example 1: Design a Turing Machine to recognize 0n1n2n 

ex: #000111222_ _ _ _ _……. 

 
Step 1: Stamp the first 0 with X, then seek the first 1 and stamp it with Y, and then seek 

the first 2 and stamp it with Z and then move left. 

S0 , 0 S1 ,X,R 

S1 , 0 S1 , 0 ,R 

S1 , 1 S2 ,Y,R 

S2 , 1 

S2 , 2 

S2 , 1,R 

S3 ,Z, L 
 

S0 = Start State, seeking 0, stamp it with X 

S1 = Seeking 1, stamp it with Y 

S2 = Seeking 2, stamp it with Z 

 
Step 2: Move left until an X is reached, then move one step right. 

S3 , 1 

S3 ,Y 

S3 , 0 

S3 ,X 

S3 , 1 , L 

S3 ,Y, L 

S3 , 0 , L 

S0 , X, R 

 

 

S3 = Seeking X, to repeat the process. 
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S, 

 

Step 3: Move right until the end of the input denoted by blank( _ ) is reached passing 

through X Y Z s only, then the accepting state SA is reached. 

 

S0 , Y     S4 , Y, R 

S4 , Y     S4 , Y, R 

S4 , Z       S4 ,Z, R 

S4 ,        SA, 
, STOP

 

S4 = Seeking blank 
 

These are the transitions that result in halting states. 

S4 , 1 h, 1 ,STOP 

S4 , 2 h, 2 ,STOP 

S4 , SA, 
, STOP

 

S0 , 1 

S0 , 2 

S1 , 2 

h, 1 ,STOP 

h, 2 ,STOP 

h, 2,STOP 

S2 , h, 
, STOP

 

 
TM Example 2 : Design a Turing machine to accept a Palindrome 

 

ex: #1011101_ _ _ _ _……. 

Step 1: Stamp the first character (0/1) with _, then seek the last character by moving till a 

_ is reached. If the last character is not 0/1 (as required) then halt the process 

immediately. 
 

S0 , 0 

S0 ,1 

S1 , 

S3 , 1 

S2 , 

S5 , 0 
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S1 , 
, R

 

S2 , 
, R

 

3 
, L 

h, 1,STOP 

S5 , 
, L

 

h, 0 ,SOP 
T 
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S, S , 

 

Step 2: If the last character is 0/1 accordingly, then move left until a blank is reached to 

start the process again. 

S3 , 0 S4, 
, L

 

S4 , 1 S4 , 1 ,L 

S4 , 0  S4 , 0 ,L 

S4 , S0 , 
, R

 

S5 , 1 S6 , 

S6 , 1 S6 , 1 ,L 

S6 , 0  S6 , 0 ,L 

S6 , S0 , 
, R

 

 

Step 3 : If a blank ( _ ) is reached when seeking next pair of characters to match or when 

seeking a matching character, then accepting state is reached. 

 
S3 , SA, 

, STOP
 

S5 , SA, 
, STOP

 

0 A 
, STOP 

 

The sequence of events for the above given input are as follows: 

 
#s010101_ _ _ 

#_s20101_ _ _ 

#_0s2101_ _ _ 

. . . . 

#_0101s5_ _ _ 

#_010s6_ _ _ _ 

#_s60101_ _ _ 

#_s00101_ _ _ 

. . . . 

#_ _ _ _ s5 _ _ _ _ _ _ 

#_ _ _ _ sA _ _ _ _ _ _ 

, L 
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1-Stamper 

2-Seeker 

0-Seeker 

2-Stamper 

 

Modularization of TMs 
 

Designing complex TM s can be done using modular approach. The main problem can be 

divided into sequence of modules. Inside each module, there could be several state 

transitions. 

For example, the problem of designing Turing machine to recognize the language 0n1n2n 

can be divided into modules such as 0-stamper, 1-stamper, 0-seeker, 1-seeker, 2-seeker 

and 2-stamper. The associations between the modules are shown in the following figure: 

 

TM: 0n1n2n 
 

 

 

Load → Decode → Execute →Store 

 

 
Universal Turing Machine 

 

A Universal Turing Machine UTM takes an encoding of a TM and the input data as its 

input in its tape and behaves as that TM on the input data. 

 
A TM spec could be as follows: 

 
TM = (S,S0,H,T,d) 

Suppose, S={a,b,c,d}, S0=a, H={b,d} T={0,1} 

Δ : (a,0) (b,1,R) , (a,1) (c,1,R) , 

(c,0) (d,0,R) and so on 

then TM spec: 

$abcd$a$bd$01$a0b1Ra1c1Rc0d0R……. 

where $ is delimiter 

 
This spec along with the actual input data would be the input to the UTM. 

This can be encoded in binary by assigning numbers to each of the characters appearing 

in the TM spec. 

 
The encoding can be as follows: 

1-Seeker 0-Stamper 
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L oad Decode Execute Store 

 

$ : 0000 0 : 0101 

a : 0001 1 : 0110 

b : 0010 L : 0111 

c : 0011 R : 1000 

d : 0100 

So the TM spec given in previous slide can be encoded as: 

0000.0001.0010.0011.0100.0000.0001.0000.0010.0100 …… 

Hence TM spec can be regarded just as a number. 

 
Sequence of actions in UTM: 

Initially UTM is in the start state S0. 

 
 Load the input which is TM spec. 

 Go back and find which transition to apply. 

 Make changes, where necessary. 

 Then store the changes. 

 Then repeat the steps with next input. 

 
Hence, the sequence goes through the cycle: 

 
 

 

7.3 :Extensions to Turing Machines 

Proving Equivalence 

For any two machines M1 from class C1 and M2 from class C2: 

 
M2 is said to be at least as expressive as M1 

if L(M2) = L(M1) or if M2 can simulate M1. 

 

M1 is said to be at least as expressive as M2 

if L(M1) = L(M2) or if M1 can simulate M2. 

 

Composite Tape TMs 
 

 

Track 0 
 
 

Track 1 

 
A composite tape consists of many tracks which can be read or written simultaneously. 

 
A composite tape TM (CTM) contains more than one tracks in its tape. 

0 1 1 0 1 0 1 0 0 … 

0 0 1 1 1 1 1 1 0 … 
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Equivalence of CTMs and TMs 

 
A CTM is simply a TM with a complex alphabet.. 

 
T = {a, b, c, d} 

T‟ = {00, 01, 10, 11} 

 
Turing Machines with Stay Option 

 

Turing Machines with stay option has a third option for movement of the TM 

head: 

left, right or stay. 

 
STM = <S, T, , s0, H> 

 

: S x T à S x T x {L, R, S} 

Equivalence of STMs and TMs 

STM = TM: 

Just don‟t use the S option… 

TM = STM: 

For L and R moves of a given STM build a TM that moves correspondingly L or 

R… 
 

TM = STM: 

 
For S moves of the STM, do the following: 

1.Move right, 

2.Move back left without changing the tape 

3.STM:   (s,a) |-- (s‟,b,S) 

 

TM: (s,a) |-- (s‟‟, b, R) 

(s‟‟,*) |-- (s‟,*,L) 

 
2-way Infinite Turing Machine 

 
In a 2-way infinite TM (2TM), the tape is infinite on both sides. 

There is no # that delimits the left end of the tape. 

Equivalence of 2TMs and TMs 

2TM = TM: 

Just don‟t use the left part of the tape… 

TM = 2TM: 

Simulate a 2-way infinite tape on a one-way infinite tape… 
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0 –1 1 –2 2 –3 3 –4 4 –5 5 … 

 

 
 

 

 

Multi-tape Turing Machines 

 
A multi-tape TM (MTM) utilizes many tapes. 

 
 

 

 

Equivalence of MTMs and TMs 

 
MTM = TM: 

Use just the first tape… 

 
TM = MTM: 

Reduction of multiple tapes to a single tape. 

 
Consider an MTM having m tapes. A single tape TM that is equivalent can be constructed 

by reducing m tapes to a single tape. 

 

A 

B 

C 

 
 

TM 

… -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 … 

A0 B0 C0 A1 B1 C1  A2 B2  C2 A3 B3 .. 

0 1 2 3 4 5 6 7 … 

0 1 2 3 4 5 6 7 … 

0 1 2 3 4 5 6 7 … 
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Non-deterministic TM 

 
A non-deterministic TM (NTM) is defined as: 

NTM = <S, T, s0, , H> 

 
where  : S x T à2SxTx{L,R} 

 

Ex: (s2,a) à {(s3,b,L) (s4,a,R)} 

 

 
Equivalence of NTMs and TMs 

A “concurrent” view of an NTM: 

 
(s2,a) à {(s3,b,L) (s4,a,R)} 

è at (s2,a), two TMs are spawned: 

(s2,a) à (s3,b,L) 

(s2,a) à (s4,a,R) 

 
UNIT-7 

 
Recommended question: 

 
 Define Turing machine 

 Explain multi-tape Turing machine 

 Explain un decidability 

 What is halting problems 
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Unit-8:Undesirability 

 

8.1: A language that is not recursively enumerable 

8.2: a un decidable problem that is RE 

8.3: Posts correspondence problem 

8.4: other undecidable problem 
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8.1 : A language that is not recursively enumerable 

Decidable 

A problem P is decidable if it can be solved by a Turing machine T that always 

halt. (We say that P has an effective algorithm.) 

 
Note that the corresponding language of a decidable problem is recursive. 

Undecidable 

 
A problem is undecidable if it cannot be solved by any Turing machine that halts 

on all inputs. 

 
Note that the corresponding language of an undecidable problem is non-recursive. 

Complements of Recursive Languages 

Theorem: If L is a recursive language, L is also recursive. 

Proof: Let M be a TM for L that always halt. We can construct another TM M 

from M for L that always halts as follows: 
 

 
 

 

Input 
Accept 

Rejec 

 

 

 

Complements of RE Languages 

Theorem: If both a language L and its complement L are RE, L is recursive. 

Proof: Let M1 and M2 be TM for L and L respectively. We can construct a TM 

M from M1 and M2 for L that always halt as follows: 

 

 
Input 

Accept 

Reject 

 

A Non-recursive RE Language 

Accept 

Rejec 

M 

M 

M 
M 

1 Accept 

M2 Accept 
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• We are going to give an example of a RE language that is not recursive, i.e., a 

language L that can be accepted by a TM, but there is no TM for L that always 

halt. 

• Again, we need to make use of the binary encoding of a TM. 
 

Ld 
 

 

 

 
Recursive 

 

 
Recursively 

Enumerable (RE) 

We will now 

look at an 

example in 

this region. 

 

 

 

Non-recursively 

Enumerable (Non-RE) 

A Non-recursive RE Language 

• Recall that we can encode each TM uniquely as a binary number and enumerate 

all TM‟s as T1, T2, …, Tk, … where the encoded value of the kth TM, i.e., Tk, is 

k. 

• Consider the language Lu: 

Lu = {(k, w) | Tk accepts input w} 

This is called the universal language. 

Universal Language 

• Note that designing a TM to recognize Lu is the same as solving the problem of 

given k and w, decide whether Tk accepts w as its input. 

• We are going to show that Lu is RE but non-recursive, i.e., Lu can be accepted by 

a TM, but there is no TM for Lu that always halt. 
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0 1 1 1 1 1 1 

 

 

 

Universal Turing Machine 

• To show that Lu is RE, we construct a TM 

U, called the universal Turing machine, 

such that Lu = L(U). 

• U is designed in such a way that given k 

and w, it will mimic the operation of Tk on 

input w: 
 

k separator w 

U will move back and forth to mimic Tk on input w. 

 

 

 
 

Universal Turing Machine 
 

 

 

 

(k, w) 
w

 

i.e., k1111110w 

Accept 

 

U 

Accept 

 

 

Why cannot we use a similar method to construct 

a TM for Ld? 

Tk 
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Universal Language 

• Since there is a TM that accepts Lu, Lu is 

RE. We are going to show that Lu is non- 

recursive. 

• If Lu is recursive, there is a TM M for Lu 

that always halt. Then, we can construct a 

TM M‟ for Ld as follows: 
 

Reject 
k 

Accept 
 

 
 

A Non-recursive RE Language 

• Since we have already shown that Ld is non-recursively enumerable, so M‟ does 

not exist and there is no such M. 

• Therefore the universal language is recursively enumerable but non-recursive. 

Halting Problem 

Consider the halting problem: 

Given (k,w), determine if Tk halts on w. 

It‟s corresponding language is: 

Lh = { (k, w) | Tk halts on input w} 

The halting problem is also undecidable, i.e., Lh is non-recursive. To show this, 

we can make use of the universal language problem. 

We want to show that if the halting problem can be solved (decidable), the 

universal language problem can also be solved. 

So we will try to reduce an instance (a particular problem) in Lu to an instance 

in Lh in such a way that if we know the answer for the latter, we will know the 

answer for the former. 

Class Discussion 

Consider a particular instance (k,w) in Lu, i.e., we want to determine if Tk will 

accept w. Construct an instance I=(k‟,w‟) in Lh from (k,w) so that if we know 

whether Tk‟ will halt on w‟, we will know whether Tk will accept w. 

Halting Problem 

 
Therefore, if we have a method to solve the halting problem, we can also solve 

the universal language problem. (Since for any particular instance I of the 

universal language problem, we can construct an instance of the halting problem, 

solve it and get the answer for I.) However, since the universal problem is 

undecidable, we can conclude that the halting problem is also undecidable. 

Modified Post Correspondence Problem 

k1111110k Accept 

Reject 

M‟ 

Copy 

 

M 
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• We have seen an undecidable problem, that is, given a Turing machine M and an 

input w, determine whether M will accept w (universal language problem). 

• We will study another undecidable problem that is not related to Turing machine 

directly. 

Given two lists A and B: 
A = w1, w2, …, wk B = x1, x2, …, xk 

The problem is to determine if there is a sequence of one or more integers i1, i2, 

…, im such that: 

w1wi1wi2…wim = x1xi1xi2…xim 

(wi, xi) is called a corresponding pair. 

 

Example 
 

 A B 

i wi xi 

1 11 1 

2 1 111 

3 0111 10 

4 10 0 

This MPCP instance has a solution: 3, 2, 2, 4: 

w1w3w2w2w4 = x1x3x2x2x4 = 1101111110 

 
 

8.2 : a un decidable problem that is RE 
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Undecidability of PCP 

To show that MPCP is undecidable, we will 

reduce the universal language problem (ULP) to 

MPCP: 

Universal 

Language 

Problem (ULP) 

 
MPCP 

 

If MPCP can be solved, ULP can also be solved. 

Since we have already shown that ULP is un- 

decidable, MPCP must also be undecidable. 

 
 

Mapping ULP to MPCP 

• Mapping a universal language problem instance to an MPCP instance is not as 

easy. 

• In a ULP instance, we are given a Turing machine M and an input w, we want to 

determine if M will accept w. To map a ULP instance to an MPCP instance 

success-fully, the mapped MPCP instance should have a solution if and only if M 

accepts w. 

 

 

Mapping ULP to MPCP 
 

ULP instance MPCP instance 
 
Construct an 

MPCP instance 
 

 

 

 

 

 

If T accepts w, the two lists can be matched. 

OtherwCSE, the two lists cannot be matched. 

 

 
Mapping ULP to MPCP 

 
Two lists: 

A and B 

 
Given: 

(T,w) 

 
A mapping 
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q0 0/0, L q1 

 

• We assume that the input Turing machine T: 

– Never prints a blank 

– Never moves left from its initial head position. 

• These assumptions can be made because: 

– Theorem (p.346 in Textbook): Every language accepted by a TM M2 will 

also be accepted by a TM M1 with the following restrictions: (1) M1‟s  

head never moves left from its initial position. (2) M1 never writes a 

blank. 

Mapping ULP to MPCP 

Given T and w, the idea is to map the transition function of T to strings in the two 

lists in such a way that a matching of the two lists will correspond to a 

concatenation of the tape contents at each time step. 

We will illustrate this with an example first. 

 
 

Example of ULP to MPCP 
 

• Consider the following Turing machine: 

T = ({q0, q1},{0,1},{0,1,#}, Δ, q0, #, {q1}) 
 

1/0, R 

Δ(q0,1)=(q0,0,R) Δ(q0,0)=(q1,0,L) 

• Consider input w=110. 
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Example of ULP to MPCP 

• Now we will construct an MPCP instance 

from T and w. There are five types of 

strings in list A and B: 

• Starting string (first pair): 

List A List B 

# #q0110# 

 

 

 

 
Example of ULP to MPCP 

• Strings from the transition function Δ: 

List A List B 

q01 0q0 (from Δ(q0,1)=(q0,0,R)) 

0q00 q100 (from Δ(q0,0)=(q1,0,L)) 

1q00 q110 (from Δ(q0,0)=(q1,0,L)) 

 

 

 

Example of ULP to MPCP 

• Strings for copying: 

List A List B 

# # 

0 0 

1 1 

Example of ULP to MPCP 

• Strings for consuming the tape symbols at the end: 
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List A List B List A List B  

0q1 q1 0q11 q1 

1q1 q1 1q10 q1 

q10 q1 0q10 q1 

q11 q1 1q10 q1 

Example of ULP to MPCP 

• Ending string: 

List A List B 

q1##  # 

 
Now, we have constructed an MPCP instance 

Example of ULP to MPCP 

List A List B List A List B 

1. # #q0110# 9. 0q1 q1 

2. q01 0q0 10. 1q1 q1 

3. 0q00 q100 11. q10 q1 

4. 1q00 q110 12. q11 q1 

5. # # 13. 0q11 q1 

6. 0 0 14. 1q10 q1 

7. 1 1 15. 0q10 q1 

8. q1## # 16. 1q10 q1 

Example of ULP to MPCP 

 

 

Example of ULP to MPCP 

• This ULP instance has a solution: 

q0110 → 0q010 → 00q00 → 0q100 (halt) 

• Does this MPCP instance has a solution? 

List A: 
# q0 1 1 0 # 0 q0 1 0 # 0 0 q0 0 # 0 q1 0 0 # q1 0 # q1 # # 

List B: 
# q0 1 1 0 # 0 q0 1 0 # 0 0 q0 0 # 0 q1 0 0 # q1 0 # q1 # # 

The solution is the sequence of indices: 

2, 7, 6, 5, 6, 2, 6, 5, 6, 3, 5, 15, 6, 5, 11, 5, 8 

 
Class Discussion 

Consider the input w = 101. Construct the corresponding MPCP instance I and 

show that T will accept w by giving a solution to I. 



ATC 17CS54 

Dept of CSE,SJBIT Page 119 

 

 

 

 

 
 

Class Discussion (cont‟d) 
 

List A List B  List A List B 

1. # #q0101# 9. 0q1 q1 

2. q01 0q0 10. 1q1 q1 

3. 0q00 q100 11. q10 q1 

4. 1q00 q110 12. q11 q1 

5. # # 13. 0q11 q1 

6. 0 0 14. 1q10 q1 

7. 1 1 15. 0q10 q1 

8. q1## # 16. 1q10 q1 

Mapping ULP to MPCP 

• We summarize the mapping as follows. Given T and w, there are five types of 

strings in list A and B: 

• Starting string (first pair): 

List A List B 

# #q0w# 

where q0 is the starting state of T. 

Mapping ULP to MPCP 

• Strings from the transition function Δ: 

List A List B 

qX Yp from Δ(q,X)=(p,Y,R) 

ZqX pZY from Δ(q,X)=(p,Y,L) 

q# Yp# from Δ(q,#)=(p,Y,R) 

Zq# pZY# from Δ(q,#)=(p,Y,L) 

where Z is any tape symbol except the blank. 

Mapping ULP to MPCP 

• Strings for copying: 

List A List B 

X X 

where X is any tape symbol (including the blank). 

Mapping ULP to MPCP 

• Strings for consuming the tape symbols at the end: 

List A   List B 

Xq q 

qY q 

XqY q 
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where q is an accepting state, and each X and Y is any tape symbol except the 

blank. 

Mapping ULP to MPCP 

• Ending string: 

List A List B 

q##  # 

where q is an accepting state. 

 
• Using this mapping, we can prove that the original ULP instance has a solution if 

and only if the mapped MPCP instance has a solution. (Textbook, p.402, Theorem 

9.19) 

 
 

8.3 Post's Correspondence Problem 

(PCP) 

Input: Two sequences, A = w1; : : : ;wk and 

B = x1; : : : ; xk, where each wi and xi is a string 

over some alphabet §. 

Question: Is there a sequence i1; : : : ; im such 

that 1 · ij · k for 1 · j · m and 

wi1 ¢ ¢ ¢wim = xi1 ¢ ¢ ¢ xim? 

 
 

Example: 

A = 1; 10111; 10 

B = 111; 10; 0 
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8.4 : other undecidable problem 

 
A problem P is decidable if it can be solved by a Turing machine T that always halt. (We 

say that P has an effective algorithm.) 

 
Note that the corresponding language of a decidable problem is recursive. 

Undecidable 

 
A problem is undecidable if it cannot be solved by any Turing machine that halts 

on all inputs. 

 
Note that the corresponding language of an undecidable problem is non-recursive. 

Complements of Recursive Languages 

Theorem: If L is a recursive language, L is also recursive. 

Proof: Let M be a TM for L that always halt. We can construct another TM M 

from M for L that always halts as follows: 
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Input 
Accept 

Rejec 

 

 

 

Complements of RE Languages 

Theorem: If both a language L and its complement L are RE, L is recursive. 

Proof: Let M1 and M2 be TM for L and L respectively. We can construct a TM 

M from M1 and M2 for L that always halt as follows: 

 

 
Input 

Accept 

Reject 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Accept 

Rejec 

M 

M 

M 
M 

1 Accept 

M2 Accept 
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Recommended questions: 

Unit 8: 

1. Explain briefly the following Halting problem 

2. What is Post‟s Correspondence problem 

3. P.t If L is a recursive language, L is also recursive. 

4. define undecidability, decidability 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


